首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1990年)已知函数f(χ)具有任意阶导数,且f′(χ)=[f(χ)]2,则当n为大于2的正整数时,f(χ)的n阶导数f(n)(χ)是 【 】
(1990年)已知函数f(χ)具有任意阶导数,且f′(χ)=[f(χ)]2,则当n为大于2的正整数时,f(χ)的n阶导数f(n)(χ)是 【 】
admin
2021-01-19
46
问题
(1990年)已知函数f(χ)具有任意阶导数,且f′(χ)=[f(χ)]
2
,则当n为大于2的正整数时,f(χ)的n阶导数f
(n)
(χ)是 【 】
选项
A、n![f(χ)]
n+1
B、n[f(χ)]
n+1
C、[f(χ)]
2n
D、n![f(χ)]
2n
答案
A
解析
等式f′(χ)=[f(χ)]
2
两边对χ求导得
f〞(χ)=2f(χ)f′(χ)=2[f(χ)]
3
f′〞(χ)=2×3[f(χ)]
2
f′(χ)=2×3[f(χ)]
4
…
f
(n)
(χ)=[f(χ)]
n+1
n!
转载请注明原文地址:https://kaotiyun.com/show/Jl84777K
0
考研数学二
相关试题推荐
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
设F(x)=,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)∫-23x2F’(x)dx.
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
计算n阶行列式,其中α≠β。
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1,+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
(1)由方程sinχy+ln(y-χ)=χ确定函数y=y(χ),求.(2)设f(χ)=,求df(χ)|χ=0.(3)设y=y(χ)是由eχ-χ+y-2=0确定的隐函数,则y〞(0)=_______.
设x1>0,xn+1=1—e-xn,n=1,2,….(1)证明数列{xn}收敛,并求其极限;(2)求极限
设A为3阶方阵,A*是A的伴随矩阵,A的行列式,求行列式|(3A)-1=2A*|的值.
甲、乙两人相约在0到T这段时间内在约定的地点会面,先到的人等候另一人,如等候时间超过时间t(t<T)便离开,试求甲、乙两人能会上面的概率.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
随机试题
临产后,子宫收缩最强的部位是()
下列关于怀孕前准备的说法不正确的是
下列说法中,不属于詹克斯归纳的后现代主义派的表现形式的是()
阅读下面材料,回答问题。小刚在小学是个很爱提问的人,可每次提问都被否定了。一次,语文老师在教古诗《春晓》时小刚觉得有异议,就问老师:“老师说诗人春天好睡觉,连天亮都不晓得,那他夜里怎么能听见风雨声呢?”这位老师不以为然地说:“这有什么奇怪的!早
一名教师教授新课之前让学生复习了以前的内容“跃”这个字,右边的“夭”正好是今天学的“笑”的下半部分,于是当学生再学“笑"这个字的时候就容易多了,这名教师是运用__________原则来进行教学的。
吸毒人员黄某,以贩养吸,先后贩卖鸦片5000余克,人民法院依法以贩卖毒品罪判处黄某死刑。作为一种违反国家法律法规的行为,黄某行为的本质特征是()。
虽然我国农村一对夫妇大多生育二胎以上,但几乎所有的年轻人都一拨一拨到城市打工。因此,年轻的高素质移民将不断对冲大城市老龄人口,使人口年龄相对下降或持平,大城市的活力就会保持下去。而在一些地方,老年人支撑农村,已显端倪,甚至可能成为常态。日本的偏僻农村就是前
进口配额
某企业评选年度优秀职员,J,K,L,M,N,O,P七位候选人按得票的多少排序,得票最多的名列第一。每人得的票数均不同。J的票数比O多;O的票数比K多;K的票数比M多;N不是最后一名;P的票数比L少,但是比N多.也比O多。以下哪项从第一名到最后一名的排
设A是三阶实对称矩阵,r(A)=1,A2一3A=O,设(1,1,一1)T为A的非零特征值对应的特征向量.求矩阵A.
最新回复
(
0
)