首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs线性无关的充分条件是( )
向量组α1,α2,…,αs线性无关的充分条件是( )
admin
2018-07-26
68
问题
向量组α
1
,α
2
,…,α
s
线性无关的充分条件是( )
选项
A、α
1
,α
2
,…,α
s
均不为零向量.
B、α
1
,α
2
,…,α
s
中任意两个向量的分量不成比例.
C、α
1
,α
2
,…,α
s
中任意一个向量均不能由其余s-1个向量线性表示.
D、α
1
,α
2
,…,α
s
中有一部分向量线性无关.
答案
C
解析
因为,α
1
,α
2
,…,α
s
线性相关
该向量组中至少存在一个向量,它可以由该组中其余s-1个向量线性表示.而“存在一个向量…”的反面是“任意一个向量都不…”,故有:α
1
,α
2
,…,α
s
线性无关
该组中任意一个向量都不能由其余s-1个向量线性表示,即知C正确.注意备选项A、B及D都是向量组α
1
,α
2
,…,α
s
线性无关的必要条件而非充分条件.例如,向量组α
1
=(1,1),α
2
=(2,2)中不含零向量,但却线性相关,故A不对;向量组α
1
=(1,2,3),α
2
=(4,5,6),α
3
=(3,3,3)中任意两个向量的分量不成比例,而且有一部分向量α
1
与α
2
线性无关,但α
1
,α
2
,α
3
线性相关,这说明B、D都不对.
转载请注明原文地址:https://kaotiyun.com/show/sHW4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断:(Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示;(Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
证明极限不存在.
设4阶矩阵A的秩为2,则r(A*)=_____.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
计算行列式|A|=之值.
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
求曲线上点(0,0)处的切线方程.
设A是n阶可逆矩阵,且A与A-1的元素都是整数,证明:|A|=±1.
将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)=________.
随机试题
简述出版物发行质量规范管理的工作要求。
女性。25岁。有低热、乏力、四肢关节肌肉疼痛2月。查体:T38℃,颧部红色片状斑疹,肝肋下一指、脾肋下二指,双手掌指关节、各指间关节、双膝关节肿胀、压痛.双下肢凹陷性水肿。化验:ESR110mm/h、C3降低尿蛋白(++)、血压150/90mmHg。
移植抗原是指
对ARDS的诊断和病情判断有重要意义的检查是( )。
建设单位要建立和完善水环境监测制度,对厂区及周边地下水进行监测,监测点布置应遵循的原则包括()。
()的主要目是保持各级各类规划顺序原则的一致性,保持政策的有效性和连续性。
全站仪主要由组成。()
发现学习的首倡者是()。
2,3,6,15,()
下列关于栈叙述正确的是()。
最新回复
(
0
)