首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年)设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2009年)设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2019-03-21
60
问题
(2009年)设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(χ
1
,χ
2
,χ
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [*] 得χ
1
=-χ
2
,χ=1-2χ
2
(χ
2
任意).令自由未知量χ
2
=-c
1
,则得 [*] 设考ξ
3
=(y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
3
=ξ
1
,由 [*] 得y
1
=-[*]-y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
ξ
2
ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/sUV4777K
0
考研数学二
相关试题推荐
设y=f(x,t),且方程F(x,y,t)=0确定了函数t=t(x,y),求.
设z=f(u,v),u=φ(x,y),v=ψ(x,y)具有二阶连续偏导数,求复合函数z=f[φ(x,y),ψ(x,y)]的一阶与二阶偏导数.
设x=x(y,z),y=y(z,x),z=z(x,y)都是方程F(x,y,z)=0所确定的隐函数,并且F(x,y,z)满足隐函数存在定理的条件,则=________.
求极限ω=
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
已知齐次方程组(Ⅰ)解都满足方程x1+x2+x3=0,求a和方程组的通解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
随机试题
下列杂剧作品属于元杂剧作家宫天挺的代表作的是()
以下事项属于公司章程绝对必要记载事项的是()
膀胱经的郄穴是
在我国,封闭式基金的交割与资金交收实行()制度。[2015年3月证券真题]
(2012年)A股份有限公司(以下简称“A公司”)注册资本为8000万元。甲系A公司控股股东,持股比例为35%。乙持有A公司股份192万股。2007年8月20日,乙听到A公司欲进行产业转型的传闻,遂通过电话向A公司提出查阅董事会近一年来历次会议决议的要求。
有没有专门的制式服装是近代警察与古代警察区别之一。()
根据下图回答131~135题。由以上数据统计图,试估计每台电视的销售价是多少元?()
结合材料回答问题:材料1若夫美、法民政,英、德宪法,地远俗殊,变久迹绝,臣故请皇上以俄大彼得之心为心法,以日本明治之敢为政法也。然求其时地不远,教俗略同,成效已彰,推移即时,若名书佳画,墨迹尚存,而易于临摹,如宫室衣裳,裁量恰符,而立可
文慧是新东方学校的人力资源培训讲师,负责对新入职的教师进行入职培训,其PowerPoint演示文稿的制作水平广受好评。最近,她应北京节水展馆的邀请,为展馆制作一份宣传水知识及节水工作重要性的演示文稿。节水展馆提供的文字资料及素材参见“水资源利用与节水(素
Thisbookisaninvitationtosharetheexperiencesofpeople(31)likeyou,learnanewlanguageorcometoliveinacultured
最新回复
(
0
)