首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
admin
2019-01-23
31
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 [*] 于是A的特征值为1,1,0,并且Q的第3列=[*]是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,一1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
),两边做转置,得 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/scM4777K
0
考研数学一
相关试题推荐
设f’(x)=arcsin(x一1)2及f(0)=0,求∫01f(x)dx.
把y看作自变量,x为因变量,变换方程=x.
求.
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)≤a,|f"(x)≤b.苴中a,b都是非负常数,c是(0,1)内任意一点.证明|f’(c)≤2a+.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα1=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为γ,求薄板受的液体压力.
随机试题
霍乱吐泻“米泔水”样物质是因为泻吐物中
1984年,国务院颁发了《城市规划条例》,这是新中国建国以来,城市规划专业领域的第一部基本法规,标志着()。
审查确认分包单位资质是( )的基本职责。
【2010.福建】下列不属于新课程结构特点的是()。
现代教育制度发展的趋势表现在哪几个方面?
关于加快转变经济发展方式的基本要求,下列说法不正确的是()。
在对函数进行原型声明时,下列语法成分中,不需要的是()。
Somepeoplebelievethatinternationalsportcreatesgoodwillbetweenthenationsandthatifcountriesplaygamestogetherthey
A、 B、 C、 Capairofshoes.
TheAlzheimer’sAssociationandtheNationalAllianceforCaregivingestimatethatmenmakeupnearly40percentoffamilycare
最新回复
(
0
)