首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。 当α1=,α2=,β1=,β2=时,求出所有的向量γ。
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。 当α1=,α2=,β1=,β2=时,求出所有的向量γ。
admin
2018-01-26
67
问题
设α
1
,α
2
,β
1
,β
2
均是三维向量,且α
1
,α
2
线性无关,β
1
,β
2
线性无关,证明存在非零向量γ,使得γ既可由α
1
,α
2
线性表出,又可由β
1
,β
2
线性表出。
当α
1
=
,α
2
=
,β
1
=
,β
2
=
时,求出所有的向量γ。
选项
答案
四个三维向量α
1
,α
2
,β
1
,β
2
必线性相关,故有不全为零的数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0。 令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
, 则必有k
1
,k
2
不全为零。否则,若k
1
=k
2
=0,由k
1
,k
2
,l
1
,l
2
不全为零知,l
1
,l
2
不全为零,从而-l
1
β
1
-l
1
β
2
=0,这与β
1
,β
2
线性无关相矛盾,所以k
1
,k
2
不全为0。同理l
1
,l
2
亦不全为0。从而γ≠0,且它既可由α
1
,α
2
线性表出,又可由β
1
,β
2
线性表出。 对已知的α
1
,α
2
,β
1
,β
2
,设x
1
α
1
+x
2
α
2
+y
1
β
1
+y
2
β
2
=0,对α
1
,α
2
,β
1
,β
2
组成的矩阵作初等行变换,有 [*] 于是得方程组的通解为k(0,-3,-2,1)
T
,即 x
1
=0,x
2
=-3k,y
1
=-2k,y
2
=k, 所以 γ=-3kα
2
=[*],l为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/scr4777K
0
考研数学一
相关试题推荐
下列说法中正确的是().
设f(x)在x=0处二阶可导,f(0)=0且,则().
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y].
设{Xn}是一随机变量序列,Xn的密度函数为:试证:
求(4一x+y)dx一(2一x—y)dy=0的通解.
微分方程y’+ytanx=cox的通解为y=_________.
微分方程y’’+2y’+2y=e-xsinx的特解形式为()
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
随机试题
关于磁共振图像矩阵与分辨力关系的描述,正确的是
A.玉女煎B.芍药汤C.龙胆泻肝汤D.清胃散E.凉膈散
目前我国的轻钢龙骨主要有两大系列,仿日本系列和仿欧美系列,关于它们的描述,错误的是()。
按预算编制形式可将政府预算分为()。
某企业只生产和销售甲产品,2020年4月初,在产品成本为3.5万元。4月份发生如下费用:生产耗用材料6万元,生产工人工资2万元,行政管理部门人员工资1.5万元,制造费用1万元。月末在产品成本3万元,该企业4月份完工甲产品的生产成本为()
将下列各项按所表示年龄大小顺序排列,正确的顺序应是()。①不惑②垂髫③花甲④加冠⑤而立⑥古稀⑦半百
在诊断睾丸鞘膜积液时需要与哪些疾病相鉴别
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
TheUnitedStateshashistoricallyhadhigherratesofmarriagethanthoseofotherindustrializedcountries.Thecurrentannual
ThoughtsofsuicidehauntedAnitaRutnamlongbeforeshearrivedatSyracuseUniversity.Shehadahistoryofmentalillnessand
最新回复
(
0
)