首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
admin
2015-09-10
41
问题
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S
1
是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S
2
的3倍.
选项
答案
令[*] 其中x∈[a,b],显然F(x)在[a,b]上连续.又由f’(x)>0知 f(a)<f(x)<f(b) x∈(a,b) 于是 [*] 由连续函数的介值定理知,至少存在一点ξ∈(a,b),使F(ξ)=0, 即[*] ξ的唯一性可由F(x)的单调性得到 F’(x)=f(x)+f’(x)(x一a)一f(x)一3[-f(x)+f(x)一f’(x)(b一x)]=f’(x)[x—a+3(b—x)]>0 所以,F(x)在[a,b]上单调增加,故在(a,b)上只有一个ξ,使F(ξ)=0,即S
1
=3S
2
解析
转载请注明原文地址:https://kaotiyun.com/show/qLw4777K
0
考研数学一
相关试题推荐
x→0时由1-cosax~[*]
设其中f具有二阶连续偏导数,g具有二阶连续导数,求.
设F(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)内有且仅有一个实根.
设u=u(χ,y),v=v(χ,y)有连续的一阶偏导数且满足条件:F(u,v)=0,其中F有连续的偏导数且
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
求极限ω=
已知对于n阶方阵A,存在正整数k,使得Ak=O.试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
设A为n阶正定矩阵,α1,α2,…,αn为n维非零列向量,且满足αiTA-1αj=0(i≠j;i,j=1,2,…,n).试证:向量组α1,α2,…,αn线性无关.
设函数f(x)与g(x)在区间[a,b]上连续,证明:[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.(*)
已知f(x)的定义域为(0,+∞),且满足xf(x)=1+∫0xu2f(u)du。求f(x)在定义域内的最小值
随机试题
关于人事管理与人力资源管理的区别,陈述错误的是()。
骨软骨瘤的临床表现
A、阴离子型表面活性剂B、阳离子型表面活性剂C、两性离子型表面活性剂D、非离子型表面活性剂E、混合型表面活性剂十二烷基硫酸钠属于()。
某幢写字楼,土地面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日~2035年10月1日。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重置成本为1300元/m2。建筑物自然寿命为
镶贴块料以实贴面积计算的()。
(2008年考试真题)ADR业务中涉及的关键机构包括()。
下列说法正确的有()。此项租赁业务对2008年和2009年资产负债表中“长期应付款”项目的影响额为()。
下列不属于广西壮族自治区境内的国家5A级旅游景区的是()。
以下哪些是行动研究的目标?( )。
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.做答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料
最新回复
(
0
)