首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
admin
2015-09-10
60
问题
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S
1
是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S
2
的3倍.
选项
答案
令[*] 其中x∈[a,b],显然F(x)在[a,b]上连续.又由f’(x)>0知 f(a)<f(x)<f(b) x∈(a,b) 于是 [*] 由连续函数的介值定理知,至少存在一点ξ∈(a,b),使F(ξ)=0, 即[*] ξ的唯一性可由F(x)的单调性得到 F’(x)=f(x)+f’(x)(x一a)一f(x)一3[-f(x)+f(x)一f’(x)(b一x)]=f’(x)[x—a+3(b—x)]>0 所以,F(x)在[a,b]上单调增加,故在(a,b)上只有一个ξ,使F(ξ)=0,即S
1
=3S
2
解析
转载请注明原文地址:https://kaotiyun.com/show/qLw4777K
0
考研数学一
相关试题推荐
已知对于n阶方阵A,存在自然数走,使得Ak=0.试证明矩阵E—A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
x→0时由1-cosax~[*]
设f(x)为连续函数,证明:∫0πxf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设变换可把方程=0简化为=0,求常数a.
设f(x)=(1-|t|)dt(x>-11),求曲线y=f(x)与x轴所围成的平面区域的面积.
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.求SD1+D2.
设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=________.
设函数f(x)=lnx+.(I)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1.证明xn存在,并求此极限.
随机试题
在坐标图上,表示收入和消费关系的45°线意味着()
B公司通过租赁方式取得一项公允价值为1950万元的管理用固定资产,租赁期开始日为2011年1月1日,固定资产使用期4年,租赁期2年,租赁期满归还出租方,合同利率6%,每年年末支付租金1000万元,承租方担保余值100万元,另以银行存款支付初始直接费用等10
下列哪种情况下动脉CO2分压降低?
针灸治疗惊悸怔忡的基本处方是针灸治疗水饮内停证之惊悸怔忡的配穴是
设总体X的概率密度为而X1,X2,…,Xn是来自该总体的样本,则未知参数θ的最大似然估计量是()。
国际收支下的经常项目包括()。
所有水平上乘、特色鲜明的大学,无一不是办学主体在公平的市场竞争环境下逐步形成的。当前市场的公平竞争机制还存在着扭曲现象,在办学资源的配置还主要是靠各级政府“有形的手”操控的情况下,高校的办学模式趋同、办学特色缺失就是不可避免的“天然产物”了。解决这个问题的
A.黄色黏稠脓液B.淡黄稀薄脓液C.翠绿色、稍黏稠、有酸臭味的脓液D.灰白或灰褐色、有明显腐败坏死臭味的脓液E.稀薄污浊、暗灰色米汤样、夹杂干酪样坏死物的脓液金黄色葡萄球菌感染形成的脓液为()。
警察甲因为公民吴某举报自己受贿而怀恨在心,遂用他人手机向某军官发了一条短信,捏造吴某与其妻同居的事实,该军官信任自己妻子未予理睬,甲的行为构成()。(2012一专一9)
InBritain,highschoolstudentscanrunabusiness!Eachbusinessrunsforoneyear.Whentheystarttheirbusiness,theyborro
最新回复
(
0
)