首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
admin
2015-09-10
56
问题
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S
1
是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S
2
的3倍.
选项
答案
令[*] 其中x∈[a,b],显然F(x)在[a,b]上连续.又由f’(x)>0知 f(a)<f(x)<f(b) x∈(a,b) 于是 [*] 由连续函数的介值定理知,至少存在一点ξ∈(a,b),使F(ξ)=0, 即[*] ξ的唯一性可由F(x)的单调性得到 F’(x)=f(x)+f’(x)(x一a)一f(x)一3[-f(x)+f(x)一f’(x)(b一x)]=f’(x)[x—a+3(b—x)]>0 所以,F(x)在[a,b]上单调增加,故在(a,b)上只有一个ξ,使F(ξ)=0,即S
1
=3S
2
解析
转载请注明原文地址:https://kaotiyun.com/show/qLw4777K
0
考研数学一
相关试题推荐
设f(x)在(一∞,+∞)有定义,f(x+y)=f(x)+f(y)+2xy,f’(0)=a,求f(x).
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,Y1)及(X2,Y2)的分布.
设z=f(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续二阶偏导数,求
求极限ω=
求函数y=的单调区间与极值,并求该曲线的渐近线.
设(1)验证它是某个二元函数u(x,y)的全微分;(2)求出u(x,y);(3)计算
求极限
设,证明:数列{an}有界。
若,则a1cosx+b1sinx=
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为
随机试题
所谓()是会使人的心理和精神状态受到不利影响的声音。
边缘性龈炎的最主要治疗原则是
风心病心衰用洋地黄和利尿剂治疗,出现恶心、食欲不振,心电图为室性期前收缩二联律。下列哪一种情况最可能
性温,既补肾,又祛风湿的药是()。
完善社会主义市场经济体制还要求继续改革行政管理体制,合理划分()经济社会事务的管理责权,全面推进经济法制建设,加强执法和监督。
某城市跨线桥工程,上部结构为现浇预应力混凝土连续梁,其中主跨跨径为30m并跨越一条宽20m河道;桥梁基础采用直径1.5m的钻孔桩,承台尺寸为12.0m×7.0m×2.5m(长×宽×高),承台顶标高为+7.0m,承台边缘距驳岸最近距离为1.5m;河道常水位为
下列关于投资者的风险承受能力和意愿的说法中,正确的是()。
幂级数的和函数为_______.
Recently,thenewshasbeenfilledwithreportsofthe"birdflu".46.Asiaisonaregion-widehealthalert,withgovernments
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tQuota”和“tStock”,试按以下要求完成设计:创建一个查询,计算每类产品不同单位的库存金额总计。要求,行标题显示“产品名称”,列标题显示“单位”。所建查询名为“q
最新回复
(
0
)