首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
admin
2019-01-05
35
问题
已知二次型2x
1
2
+3x
2
2
+3x
3
2
+2ax
2
x
3
(a>0)可用正交变换化为y
1
2
+2y
2
2
+5y
3
2
,求a和所作正交变换.
选项
答案
原二次型的矩阵A和化出二次型的矩阵B相似. [*] 于是|A|=|B|=10.而|A|=2(9一a
2
),得a
2
=4,a=2. A和B的特征值相同,为1,2,5.对这3个特征值求单位特征向量. 对于特征值1: [*] 得(A—E)X=0的同解方程组 [*] 得属于1的一个特征向量η
1
=(0,1,一1)
T
,单位化得γ
1
=[*] 对于特征值2: [*] 得(A一2E)X=0的同解方程组 [*] 得属于2的一个单位特征向量γ
2
=(1,0,0)
T
. 对于特征值5: [*] 得(A一5E)X=0的同解方程组 [*] 得属于5的一个特征向量η
3
=(0,1,1)
T
,单位化得γ
3
=[*] 令Q=(γ
1
,γ
2
,γ
3
),则正交变换X=QY把原二次型化为y
1
2
+2y
2
2
+5y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/siW4777K
0
考研数学三
相关试题推荐
设f(x)在x=0的某邻域内连续且具有连续的导数,又设=A>0,试讨论级数是条件收敛,绝对收敛,还是发散?
某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,记试求:(Ⅰ)随机变量X1与X2的联合分布;(Ⅱ)随机变量X1和X2的相关系数ρ。
设X1,X2,…,Xm是取自正态总体N(0,σ2)的简单随机样本,X与S2分别是样本均值与样本方差,则()
设函数f(x)在点x0处可导,且,则=_______。
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求f(x1,x2,x3)的合同规范形。
设二次型f(x1,x2,x3)=2x1+ax22+2x32+2x1x2—2bx1x3+2x2x3经过正交变换化为3y12+3y22。求正交变换x=Qy,使二次型化为标准形。
设A为三阶实对称矩阵,α1=(m,一m,1)T是方程组AX=0的解,α2=(m,1,1一m)T是方程组(A+E)X=0的解,则m=_________.
设随机变量X的概率密度为对X作两次独立观察,设两次的观察值为X1,X2,令求常数a及P{X1<0,X2>1);
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A.求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
随机试题
下列风险情形中,属于金融风险中市场风险的有()。
采暖性能试验规定,试验到40min时,头部温度应比足部温度低2~5℃。()
InDecember1653,byanInstrumentofGovernment,OliverCromwellbecame______oftheCommonwealthofEngland.()
学生上完第一节课后,不受这节课饶有兴趣的内容的影响,自觉地做好上第二节课的准备。这是()。
α受体阻断药可:
初产妇,从分娩后第2天起,持续3天体温在37.5℃左右,子宫收缩好,无压痛,会阴伤口无肿胀及压痛,恶露淡红色,无臭味,双乳肿胀且有硬结。发热的原因最可能是
关于当期支付的主要特征,下列描述不正确的是( )。
以下关于FCM说法正确的是()。
从世界范围内来看,自从冷战结束,历史被宣告终结,全世界趋向保守主义,另外,在一段时期内,西方资本主义经济体系运行比较顺畅,繁荣得以维持。在这种形势下,西方出现了青年现象的退潮,表现为批判能力的下降,青年人安于现状。但是,___________,政治经济格局
WhatnewdepartmentwascreatedinthePersonnelDivision?______.WhowouldreplacePengTielin’spresentposition?__
最新回复
(
0
)