首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=相似,求x,y;并求一个正交矩阵P,使P—1AP=A。
设矩阵A=相似,求x,y;并求一个正交矩阵P,使P—1AP=A。
admin
2017-01-21
50
问题
设矩阵A=
相似,求x,y;并求一个正交矩阵P,使P
—1
AP=A。
选项
答案
A与Λ相似,相似矩阵有相同的特征值,故λ=5,λ=—4,λ=y是A的特征值。 因为λ=—4是A的特征值,所以 [*] 解得x=4。 又因为相似矩阵的行列式相同, [*]=—100, |Λ|=—20y, 所以y=5。 当λ=5时,解方程(A—5E)x=0,得两个线性无关的特征向量 [*] 将它们正交化、单位化得: [*] 当λ=—4时,解方程(A+4E)x=0,得特征向量 [*] 单位化得: p
3
=[*] 令 P=(p
1
,p
3
,p
2
)=[*] 则P
—1
AP=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/smH4777K
0
考研数学三
相关试题推荐
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
设X1,X2,…,Xn(n>1)是来自总体N(μ,σ2)的随机样本,用2X2-X1,及X1作总体参数μ为估计算时,最有效的是_______.
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX丨Y(x丨y)为
随机试题
最可能的诊断是应选何种治疗方法
患者,男,36岁。患下颌区渐进性膨胀8月余,无痛及麻木。检查:面部不对称,颊侧膨隆,皮肤色正常,前庭沟丰满,触之有乒乓球感,X线示多方低密度影像,局部蜂窝状改变,骨质菲薄。首选的治疗方法是
有关颈静脉怒张正确的是
A.行政复议B.行政诉讼C.行政许可D.行政处罚企业对药品监督管理部门作出吊销药品经营许可证的决定不服,可以向人民法院提起
组织形式是最基本的,目前使用比较广泛的项目组织形式。
市场预测的一般过程是()。
“生鱼片”理论:一旦抓到了鱼,在第一时间内就要将其以高价出售给第一流的豪华餐馆;如果不幸难以脱手的话,就只能在第2天以半价卖给二流餐馆了;到了第3天,这样的鱼就只能卖到原来1/4价钱;而此后,就是不值钱的“干鱼片”了。根据以上定义,下列做法符合“生鱼片理论
终身教育理念的提出,对现代教育的发展带来了什么影响?
下面哪个中断不是内部中断?______
ThefirstAmericanwritertousefreeverseinpoetryis
最新回复
(
0
)