首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-11-23
18
问题
设A为反对称矩阵,则
(1)若k是A的特征值,-k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=-A,于是-K是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(-Aη)
T
η=-λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,-A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设Aλ是A的特征值,则λ
2
是A
2
的特征值,因此λ
2
≤0.于是λ为0.或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/snM4777K
0
考研数学一
相关试题推荐
求下列函数的导数:
设f(x)在[a,b]上连续,f(a)=f(b)=0,且fˊ+(a)<0,fˊ-(b)<0,证明:f(x)在(a,b)内必有一个零值点.
求所所围成的立体.
计算行列式|A|=之值.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设二维随机变量(X,Y)的概率密度为求常数A及条件概率密度fY|X(y|x).
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
已知随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,设随机变量Z=X-2Y+7,则Z~________
假设X=sinZ,y=cosZ,其中Z在区间[-π,π]上均匀分布,求随机变量X和Y的相关系数ρ.试说明X和Y是否独立.
随机试题
甲融资租赁公司与乙公司签订融资租赁合同,约定乙公司向甲公司转让一套生产设备。转让价为评估机构评估的市场价200万元,再租给乙公司使用2年,乙公司向甲公司支付租金300万元。合同履行过程中,因乙公司拖欠租金,甲公司诉至法院。下列哪些选项是正确的?(
某炼油厂为了实现油品升级,决定新建连续重整装置。下列关于设备选型及配置的说法中,正确的是()。
工程建设单位不得对勘察、设计、施工、工程监理等单位提出不符合建设工程安全生产法律、法规和强制性标准规定的要求,()合同约定的工期。
锚杆支护的施工事项包括( )。
在培训计划实施的初期,保证计划达到预期效果的关键之处有()。
公文的成文日期都以它们的印发日期为准。()
DDN
设a>1,f(t)=at—at在(—∞,+∞)内的驻点为t(a)。问a为何值时,t(a)最小?并求出最小值。
A、Sheisill.B、Wedon’tknowfromthepassage.C、Thereissomethingwrongwithherfather.D、Shewenttoseeadoctor.B
BornonJuly31,1965,inGloucestershire,England,JoanneKathleenRowlinggrewupinruralcommunitiesinthesouthwesternpar
最新回复
(
0
)