首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
admin
2016-07-22
64
问题
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
选项
答案
f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=zf’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+zf’(ξ).f’’(ξ)=0. 因为|f(x)|≤1,且φ(x)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f’’(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/svw4777K
0
考研数学一
相关试题推荐
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
求极限
求极限
已知二次型f=2x12+3x22+332+2ax2x3(a>0)通过正交变换化成标准形f=y+2y+5y.求参数a及所用的正交变换矩阵.
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x-y)dxdy=∫-aaf(t)(a-|t|)dt,其中D为矩形区域:|x|≤a/2,|y|≤a/2,a>0为常数;
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
已知函数f(x)的定义域为(0,+∞),且满足2f(x)+,求f(x),并求曲线y=f(x),y=1/2,y=及y轴所围图形绕x轴旋转一周而成的旋转体的体积.
设fn(x)=1-(1-cosx)n,求证:设有
设求f(x)在点x=0处的导数.
(12年)设Ik=sinxdx(k=1,2,3),则有
随机试题
窗前的树张抗抗①我家窗前有一颗树,那是一颗高达的洋槐。②洋槐在春天,似乎比其他的树都沉稳些。杨与柳都已翠叶青青,它才爆发出米粒大的嫩芽:只星星点点的一层隐绿,
关于药品采购管理,说法不正确的是
股骨颈骨折三刃钉内固定术后,可能引起股骨头坏死的最可能的原因是
寿命周期相等的互反方案可采用为进行优逸的方法是()。
喷射混凝土掺加速凝剂前,应做与水泥的相容性试验及水泥净浆凝结效果试验,初凝不应大于(),终凝不应大于()。
预裂爆破法的分区起爆顺序为()。
下述关于开展来料加工装配业务的表达哪些是正确的?
简述智力与创造力的关系。
Losingweightiseasierwhenthereismoneyontheline,U.S.researcherssaidonTuesday.Theysaidweight-lossprogramsthat
因此尽管门票和食宿价格飞涨,景区里还是人山人海。
最新回复
(
0
)