首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
admin
2016-07-22
34
问题
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
选项
答案
f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=zf’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+zf’(ξ).f’’(ξ)=0. 因为|f(x)|≤1,且φ(x)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f’’(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/svw4777K
0
考研数学一
相关试题推荐
函数y=x+2cosx在[0,π/2]上的最大值为__________.
设f(x)在(-∞,+∞)上有定义,且对任意实数a,b,都有等式f(a+b)=eaf(b)+ebf(a)成立,又f’(0)=1,求f(x).
设矩阵A=,B=满足A-1(E—BBTA-1)-1C-1=E,求C.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)内有且仅有一个实根.
设A,B均为n阶方阵,|A|=2,|B|=-3,则|A-1B*-A*B-1|=__________.
设有摆线χ=φ(t)=t=sint,y=ψ(t)=1-cost(0≤t≤2π)的第一拱L,则L绕χ轴旋转一周所得旋转面的面积S=_______.
求的(n+1)阶麦克劳林公式(带皮亚诺型余项).
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,数学期望EX=__________.
设总体X服从的分布为总体的简单随机样本,其中m为未知参数,且取值为正整数,求参数m的矩估计和最大似然估计量.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
随机试题
(63)Enthusiasmaboutajoborprojectusuallytranslatesintopositiveenergy.Thatis,ifyouare-excitedaboutaproject,you
主题公园
Carsare【21】importantpartoflifeintheUnitedStates.Withoutacarmostpeoplefeelthattheyarepoor.Andevenifaperson
患者男性,30岁,阵发性心悸2年。每次突然发生,持续0.5~1h。查体:心率200/min,律齐,心电图示QRS波正常,P波不能明确查见,诊断为
中药入库经常性检查一般要求是中药入库后,养护专业人员定期性检查的时间是
甲、乙在同一个公司的不同部门,其中甲每隔2个工作日值一天班,乙每隔3个工作日值一天班,星期六、星期日休息。已知甲、乙某个星期一共同值班,那下次二人同时值班为星期几(没有其他的假期)?
易于实现快速的直线运动、摆动和高速转动是()的特点。
下列各项中,不属于资产负债表中股东权益项目的是()。
埃博拉病毒是一种急性传染性病毒,会导致埃博拉出血热,致死率高达50%至90%。美国研究人员日前开发出一种针对埃博拉病毒的试验性疫苗,注射这种疫苗的小鼠有八成都不会再感染埃博拉病毒。在不远的将来,这种疫苗将可以使人不再感染埃博拉病毒。以下哪项如果为真,最能加
《党的十八届四中全会重要举措实施规划(2015—2020年)》是今后一个时期推进全面依法治国的总施工图和总台账。要组织好规划实施,应注重()。
最新回复
(
0
)