首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
admin
2016-07-22
54
问题
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
选项
答案
f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=zf’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+zf’(ξ).f’’(ξ)=0. 因为|f(x)|≤1,且φ(x)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f’’(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/svw4777K
0
考研数学一
相关试题推荐
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
求θ=π/4对应r=1+cosθ上点处的切线.
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
求极限
设x=x(t)由sint-∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x"(0).
设函数y=y(x)由2xy=x+y确定,求dy|x=0.
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
设二元函数f(x,y)的二阶偏导数连续,且满足f"xx(x,y)=f"yy(x,y),f(x,2x)=x2,f’x(x,2x)=x,求f"xx(x,2x).
若线性方程组有解,则常数a1,a2,a3,a4应满足条件__________.
交换积分次序,则f(x,y)dy=__________.
随机试题
A企业购建一条新的生产线,该生产线预计可以使用5年,估计每年年末的现金净流量为25万元。假设年利率为12%,则该生产线未来现金净流量的现值为()万元。[已知(P/F,12%,5)=0.5674,(P/A,12%,5)=3.6048]
犀角地黄汤的功用是()
《划拨国有土地使用权管理暂行办法》第5条规定:“未经市、县人民政府土地管理部门批准并办理土地使用权出让手续,交付土地使用权出让金的土地使用权,不得()。”
砌筑、钢筋作业劳务分包企业的资质( )。
施工质量事故处理的基本方法包括()。
根据()的规定,公开募集基金的基金管理人应当计算并公告基金资产净值,确定基金份额申购、赎回价格,办理与基金财产管理业务活动有关的信息披露事项。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
简述教育文献检索的基本过程。
函数ReadDat()实现从文件IN.dat中读取1000个十进制整数到数组xx中。编写函数Compute(),其功能是:分别计算出xx数组中奇数的个数odd、奇数的平均值ave1、偶数的个数even、偶数的平均值ave2,以及所有奇数的方差totfc的
Withhisknowledgeandexperience,heisnodoubt(qualify)______forthetask.
最新回复
(
0
)