首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
admin
2016-07-22
39
问题
设函数f(x)在[-2,2]上二阶可导,且|x(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
选项
答案
f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=zf’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+zf’(ξ).f’’(ξ)=0. 因为|f(x)|≤1,且φ(x)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f’’(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/svw4777K
0
考研数学一
相关试题推荐
设在半平面x>0内,2xy(x4+y2)dx-(x4+y2)kdy为u(x,y)的全微分,u(x,y)有二阶连续偏导数,则k=()
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTAQ为对角矩阵.
设f(x)在[0,1]上有二阶导数,且f(1)=f(0)=f’(1)=f’(0)=0,证明:存在ξ∈(0,1),使f"(ξ)=f(ξ).
设f(x)二阶可导,且f’(x)>0,f"(x)>0,又△y=f(x+△x)-f(x),则当△x>0时有().
设z=f(x,y)二阶连续可偏导,=2,且f(x,0)=1,f’y(x,0)=x,求f(x,y).
若线性方程组有解,则常数a1,a2,a3,a4应满足条件__________.
设奇函数f(x)在[-1,1]上二阶可导,且f(1)=l,证明:(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
求由球面x2+y2+z2=1,x2+y2+z2=4z及锥面z=的上半部分所围的均质物体对位于坐标原点处的质量为m的质点的引力,设其密度μ为常数.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
下列不属于免征房产税的情形的是()
治疗臌胀水湿困脾证,应首选()
企业的财务活动不包括( )。
下列各项中,应确认为企业资产的有()。
当原始分数不呈正态分布时,()可以使其常态化。
甲种溶液含醋为72%,乙种溶液含醋为58%,第一次各取两种溶液若干,混合后溶液醋含量为62%,第二次如果每种溶液比原来都多取15升,混合后溶液中的醋含量为63.25%。问第一次混合时,甲、乙两种溶液各取多少升?()
邓小平指出:“如果现在再不实行改革,我们的现代化事业和社会主义事业就会被葬送”,开放是我国在历史转折关头做出的战略抉择,其深刻的国内和国际背景是
【B1】【B18】
Wemustleavethepartyatexactly9:00______we’llbelateforwork.
Walkingthroughmytrainyesterday,staggeringfrommyseattothebuffetandback,IcountedfivepeoplereadingHarryPottern
最新回复
(
0
)