首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对x>0的空间区域内任意的光滑有向封闭曲面∑都有 xf(x)dydz-xyf(x)dzdx-ze2xdxdy=0, 其中函数f(x)在(0,+∞)内具有连续一阶导数,且f(x)=1,求f(x)。
设对x>0的空间区域内任意的光滑有向封闭曲面∑都有 xf(x)dydz-xyf(x)dzdx-ze2xdxdy=0, 其中函数f(x)在(0,+∞)内具有连续一阶导数,且f(x)=1,求f(x)。
admin
2017-01-16
60
问题
设对x>0的空间区域内任意的光滑有向封闭曲面∑都有
xf(x)dydz-xyf(x)dzdx-ze
2x
dxdy=0,
其中函数f(x)在(0,+∞)内具有连续一阶导数,且
f(x)=1,求f(x)。
选项
答案
根据已知条件,结合高斯公式,有 0=[*]xf(x)dydz-xyf(x)dzdx-ze
2x
dxdy =±[*](xf’(x)+f(x)-xf(x)-e
2x
)dV, 其中Ω是由∑围成的有界封闭区域,由∑的任意性可知 xf’(x)+f(x)-xf(x)-e
2x
=0(x>0), 即f’(x)+([*]e
2x
(x>0), 于是 [*] 由于 [*] 所以 [*](e
2x
+Ce
x
)=0,即C+1=0,C=-1, 故f(x)=[*],x>0。
解析
转载请注明原文地址:https://kaotiyun.com/show/t3u4777K
0
考研数学一
相关试题推荐
[*]
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
A是n阶矩阵,且A3=0,则().
求点(2,1,0)到平面3x+4y+5z=0的距离.
设随机变量X和Y都服从标准正态分布,则
A、事件A和B互不相容B、事件A和B互相对立C、事件A和B互不独立D、事件A和B相互独立D
设A,B皆为n阶矩阵,则下列结论正确的是().
设二维随机变量(X,Y)的概率分布为已知随机事件{X=0}与{X+Y=1}相互独立,则
(2006年试题,一)点(2,1,0)到平面3x+4y+5z=0的距离d=____________.
随机试题
阅读下文,回答问题。温暖的村庄安庆村庄真是一个固执的地方
()对于《史记》相当于刻舟求剑对于()。
甲企业、乙企业和朱某作为发起人募集设立了丙股份有限公司,丙公司共有200万股股份,甲企业持有丙公司40万股股份.乙企业持有丙公司20万股股份,朱某持有丙公司10万股股份,其余股份以无记名股票的形式发放募集。丙公司章程中规定实行累积投票制。丙公司为奖励公司杰
一般识别声音所需要的最短持续时间为()ms。
平等的市场主体应该享有平等地接近和享用经济要素的权利,()是保证农民平等地享用经济资源,是统筹城乡经济社会发展的关键。
用不超过150字的篇幅,概括出上述资料的主要内容。用不超过350字的篇幅,针对资料所反映的问题,提出解决方案或应对措施,该方案或措施要有可行性。
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
一台交换机具有48个10/100Mbit/s端口和2个1000Mbit/s端口,如果所有端口都工作在全双工状态,那么交换机总带宽应为()。
Marywasgoingtoaweddingsoshebrushed______well.
Humanbehaviorismostlyaproductoflearning,whereasthebehaviorofananimaldependsmainlyon________.
最新回复
(
0
)