首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)= (I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)= (I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
admin
2013-08-30
63
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
nxm
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
…,x
n
)=
(I)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(x)=X
T
AX与f(x)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设, [*] 已知A为n阶实对称矩阵,从而上式两边可转置, [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*] 则由(1)式知f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
层=A
-1
,则A
-1
与A合同,于是g(X)与X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/TJ54777K
0
考研数学一
相关试题推荐
(2009年)函数y=χ2χ在区间(0,1]上的最小值为_______.
y=y(x)是微分方程y′—xy=满足y(1)=特解.求y(x).
A、处处可导B、恰有一个不可导点C、恰有两个不可导点D、至少有三个不可导点C一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式的不变性.利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数.幂指数函数f(x)g(x)求导法,隐
(00年)曲线的斜渐近线方程为______.
给定椭球体在第一象限的部分.求椭球体上任意点M0(x0,y0,z0)(x0>0,y0>0,z0>0)处椭球面的切平面
设3阶方阵满足A2B-A-B=E,求|B|.
设在区间[0,2]上,|f(x)|≤1,|f”(x)|≤1.证明:对于任意的x∈[0,2],有|f’(x)|≤2.
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则()
求下列微分方程满足初始条件的特解:
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
随机试题
心脏杂音强度取决于【】
X线影像信息传递过程中,作为信息源的是
健康成人牙槽嵴顶端位置
重置全价的确定一般可以采用()等。
投保人根据( )向保险人支付保险费。
D公司是深圳证券交易所上市公司,目前总股本5000万元,每股面值1元。股东大会通过决议,拟10股配2股,配股价26元/股,配股除权日期定为2012年3月12日。假定配股前每股价格为32元,不考虑新投资的净现值引起的企业价值的变化。要求:如果把配股改为
下列行为中,不构成代理的是()。
根据所给材料,回答问题。网络时代巨大的信息量要求网络人际交流迅速快捷,此时,传统语言的表达已不足以将信息转变成最简洁的形式输入输出。于是网络语言应运而生。这种语言以轻松活泼、幽默风趣、戏谑调侃的面目出没于传统媒体,让人耳目一新。比如“美眉”指年轻
党的十八届五中全会坚持以人民为中心的发展思想,鲜明提出了创新、协调、绿色、开放、共享的新发展理念。其中,中国特色社会主义的本质要求是()。
中国自主研发的3G通信标准是(70)。
最新回复
(
0
)