首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
线性方程组Ax=b的系数矩阵是4×5矩阵,且A的行向量组线性无关,则错误命题的是( ).
线性方程组Ax=b的系数矩阵是4×5矩阵,且A的行向量组线性无关,则错误命题的是( ).
admin
2020-06-05
37
问题
线性方程组Ax=b的系数矩阵是4×5矩阵,且A的行向量组线性无关,则错误命题的是( ).
选项
A、齐次方程组A
T
x=0只有零解
B、齐次方程组A
T
Ax=0必有非零解
C、对任意b,方程组Ax=b必有无穷多解
D、对任意b,方程组A
T
x=b必有唯一解
答案
D
解析
根据“三秩定理”及A的行向量组线性无关,得R(A)=4.
A
T
是5×4矩阵,而R(A
T
)=R(A)=4,所以齐次线性方程组A
T
x=0只有零解,故(A)正确.
A
T
A是5阶矩阵,由于R(A
T
A)≤R(A)=4﹤5,所以齐次方程组A
T
Ax=0必有非零解,
故(B)正确.
A是4×5阶矩阵,A的行向量组线性无关,那么添加分量后的向量组亦线性无关,所以
R(A)=
=4﹤5,故Ax=b必有无穷多解,(C)正确.
由于A
T
列向量只是4个线性无关的5维向量,它们不能表示任一个5维向量,故方程组A
T
x=b有可能无解,故(D)不正确.
转载请注明原文地址:https://kaotiyun.com/show/t8v4777K
0
考研数学一
相关试题推荐
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
设A,B都是n阶可逆矩阵,则().
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A,B均是3阶非零矩阵,满足AB=O,其中则()
设f(x)在[0,1]二阶可导,且f’’(x)<0,则下列命题正确的是()-
要使都是线性方程组AX=0的解,只要系数矩阵A为
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设有命题以上四个命题中正确的个数为()
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
随机试题
公共关系研究人和人的关系的角度是()。
下列选项中不属于学生主观能动性的表现是()
生产力和生产资料共同构成了社会的生产方式。()
动脉粥样斑块中,不具有的细胞是
A.传染性单核细胞增多症B.神经母细胞瘤C.急性白血病D.慢性白血病E.非霍奇金淋巴瘤女,10岁,喘憋2周,不能平卧。体检:左锁骨上及左颈部多个肿大淋巴结,胸部X线示上纵隔明显增宽,气管影偏向右侧,变窄。最可能的诊断为
患者,女,58岁。纳差、上腹部不适3年。胃镜检查示:胃黏膜变薄,皱襞稀疏。Hb86g/L,MCV102fl。该患者应主要补充的维生素是
女,50岁。上腹痛3个月余,2个月前钡剂造影检查提示胃窦后壁溃疡,经抗酸药物治疗近8周,疼痛曾一过性缓解。进一步处理应首选
下列有关收入确认的表述中,正确的有( )。
人生は何か、これはだれ()はっきり言えないだろう。
《超人总动员》是知名动画导演布拉德.伯德加入皮克斯执导的首部作品,故事讲述显赫一时的超人家族,过去参与过不少打击犯罪的英雄事迹,因过度虚耗政府库房支出,超人先生被迫隐姓埋名兼改头换面,化身肥佬保险经纪人,和爱妻、三名子女住在大城市的郊区,过着跟一般正常人同
最新回复
(
0
)