首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,若对任意的n维列向量α恒有αTAα=0,证明A=0.
设A是n阶实对称矩阵,若对任意的n维列向量α恒有αTAα=0,证明A=0.
admin
2018-06-14
87
问题
设A是n阶实对称矩阵,若对任意的n维列向量α恒有α
T
Aα=0,证明A=0.
选项
答案
[*]n维向量α恒有α
T
Aα=0,那么令α
1
=(1,0,0,…,0)
T
,有 α
1
T
Aα
1
=(1,0,0,…,0)[*]=a
11
=0. 类似地,令α
i
=(0,0,…,0,1,0,…,0)
T
(第i个分量为1),由α
i
T
Aα
i
=a
ii
=0 (i=1,2,…,n)。 令α
12
=(1,1,0,…,0)
T
,则有 α
12
T
Aα
12
=(1,1,0,…,0)[*]=a
11
+a
22
+2a
12
0. 故a
12
=0.类似可知a
ij
=0(i,j=1,2,…,n).所以 A=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/t9W4777K
0
考研数学三
相关试题推荐
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A-3E|的值.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
求∫02adx(x+y)2dy.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足=0.95的常数μ=_______.(Ф(1.96)=0.975)
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知矩阵A与B相似,其中A=.求a,b的值及矩阵P,使P-1AP=B.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
用配方法把二次型2x32-2x1x2+2x1x3-2x2x3化为标准形,并写出所用坐标变换.
随机试题
我国实行两审终审制,第二审程序是当事人不服一审判决、裁定,向上一级人民法院提起上诉的诉讼程序。二审程序是________,二审的判决、裁定是终审的,发生法律效力的判决、裁定。
患者,女,50岁。体弱多病,形体消瘦,气短乏力,纳食不香,头晕心慌,面色苍白,时嗳气,腹胀,经查诊断为胃下垂。应选用哪一类药物()
简述冠心病的膳食指导原则。
社会主义公民道德建设的基本原则是()
A、 B、 C、 D、 C通过找相邻关系,同时运用排除法。
要砌一个高125厘米的砖垛,每层都按右图所示的排列方式来砌,每块砖厚度为5厘米,每两块砖之间的灰膏厚1厘米,那么砌好这个砖垛需要()块砖。
UNESCO
在CD光盘上标记有“CD一RW”字样,此标记表明这光盘()。
在计算机中,每个存储单元都有一个连续的编号,此编号称为()。
Whoisthespeaker?
最新回复
(
0
)