首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,若对任意的n维列向量α恒有αTAα=0,证明A=0.
设A是n阶实对称矩阵,若对任意的n维列向量α恒有αTAα=0,证明A=0.
admin
2018-06-14
56
问题
设A是n阶实对称矩阵,若对任意的n维列向量α恒有α
T
Aα=0,证明A=0.
选项
答案
[*]n维向量α恒有α
T
Aα=0,那么令α
1
=(1,0,0,…,0)
T
,有 α
1
T
Aα
1
=(1,0,0,…,0)[*]=a
11
=0. 类似地,令α
i
=(0,0,…,0,1,0,…,0)
T
(第i个分量为1),由α
i
T
Aα
i
=a
ii
=0 (i=1,2,…,n)。 令α
12
=(1,1,0,…,0)
T
,则有 α
12
T
Aα
12
=(1,1,0,…,0)[*]=a
11
+a
22
+2a
12
0. 故a
12
=0.类似可知a
ij
=0(i,j=1,2,…,n).所以 A=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/t9W4777K
0
考研数学三
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是3阶矩阵,|A|=3.且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是_________.
确定正数a,b的值,使得=2.
求
计算下列二重积分:设D是由x≥0.y≥x与x2+(y一b)2≤b2,x2+(y一a)2≥a2(0<a<b)所围成的平面区域,求
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
已知A,B都是凡阶矩阵,且P-1AP=B,若a是矩阵A属于特征值λ的特征向量,则矩阵B必有特征向量_______.
求与A=可交换的矩阵.
行列式D==_______.
随机试题
下列哪项不属于肾单位的结构()
Theeffectofthedrugwill______afterfourhoursorso.
主要用于预防支气管哮喘发作的药物是
A.疼痛常因吞咽、讲话而引起B.疼痛常由于咀嚼、大张口时诱发C.持续性剧痛,夜间加剧D.疼痛常伴有耳颞区皮肤发红、多汗、唾液分泌及颞浅动脉搏动增加E.骤然发生的闪电样剧烈疼痛,持续时间较短,夜间减弱或消失舌咽神经痛疼痛的特点是()
在理想的土地市场和土地交易中,仅从发挥土地经济效益的原则出发,土地的(),地价就应该高,相反地价就低。
妈妈问小明:“哪个是左手啊?”小明想了想,举起了左手。然后,妈妈又问:“哪个是右手啊?”小明想了一会儿说:“不知道。”由此可以看出小明的心理发展处于()
下列有关科学常识的表述,不正确的是()。
SpeculationontheoriginofthesePacificislandersbeganassoonasoutsidersencounteredthem;intheabsenceofsolidlingui
Canyou______anysmellofthegaswhichisescaping?
Publicimage【C1】______tohowacompanyisviewedbyitscustomers,suppliers,andstockholders,bythefinancialcommunity,byt
最新回复
(
0
)