首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
admin
2020-04-30
30
问题
设函数f(x)处处可导,且
(k>0为常数),又设x
0
为任意一点,数列{x
n
}满足x
n
=f(x
n-1
)(n=1,2,…),试证:当n→∞时,数列{x
n
}的极限存在.
选项
答案
先证{x
n
}单调. 由x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=(x
n
-x
n-1
)f’(ξ
n
),其中ξ
n
在x
n
与x
n-1
之间. 又由已知条件,f(x)处处可导,且[*],于是知f’(ξ
n
)≥0,从而(x
n+1
-x
n
)与(x
n
-x
n-1
)同号,故{x
n
}单调. [*] 故由单调有界准则知,数列{x
n
}的极限存在.
解析
转载请注明原文地址:https://kaotiyun.com/show/tEv4777K
0
考研数学一
相关试题推荐
(2008年试题,一)随机变量X一N(0,1),y一N(1,4)且相关系数ρx,y=1,则().
设有三张不同平面,其方程为aiz+biy+ciz=di(i=1,2,3),它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为()
设矩阵是满秩的,则直线().[img][/img]
设是二阶常系数非齐次线性微分方程y"+ay’+by=cex的一个特解,则
(1989年)设函数f(x)=x2,0≤x≤1,而其中n=1,2,3,…,则为
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
抛n次硬币(该币每次出现正面的概率均为p),则共出现偶数次正面的概率为:()
若总体X~N(0,32),X1,X2,…,X9为来自总体样本容量为9的简单随机样本,则Y=服从_______分布,其自由度为________.
若非零向量a,b满足关系式|a-b|=|a+b|,则必有()
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
随机试题
在100~150℃测定粘度时,各次流动时间与其算术平均值的差数不应超过其算术平均值的±1%。()
男性,40岁,刨伤后脾破裂大出血,继而尿量减少如果检查结果为尿沉渣阴性,血尿素30mmol/L,血肌酐500μmol/L,血红蛋白50g/L,尿渗透压320mO5m/L,可能的诊断是
试问,计算吊车梁疲劳时,作用在跨间内的下列何种吊车荷载取值是正确的?
衡量中心地等级的指标称()。
用算法交易的终极目标是()。
中国证监会自受理股票发行申请文件到作出决定的期限为( )。
李老师在幼儿园内开了一个超市,幼儿张某喝了该超市所售卖的过期的矿泉水,腹泻不止。在此事件中应当承担责任的是()。
设χ=χ(t)由sint-∫tχ(t)φ(u)du=0确定,φ(0)=φ′(0)=1且φ(u)>0为可导函数,求χ〞(0).
如图所示是大型企业网核心层设计的两种方案,关于两种方案技术特点的描述中,错误的是()。
--Neverthoughttoseeyouhere.
最新回复
(
0
)