首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,一1,A+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向
设有向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,一1,A+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向
admin
2019-04-08
39
问题
设有向量组(I):α
1
=[1,0,2]
T
,α
2
=[1,1,3]
T
,α
3
=[1,一1,A+2]
T
和向量组(Ⅱ):β
1
=[1,2,a+3]
T
,β
2
=[2,1,a+6]
T
,β
3
=[2,1,a+4]
T
.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
因|β
1
,β
2
,β
3
|=[*]=(一2)×(1—4)=6≠0, 故方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3)均有唯一解,因而对任意a,向量组(I)可用向量组(Ⅱ)线性表出.但 |α
1
,α
2
,α
3
|=[*]=a+1. 当a+1≠0,即a≠一1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(f一1,2,3)有唯一解.因而β
1
,β
2
,β
3
可用α
1
,α
2
,α
3
线性表出.于是当a≠一1时,向量组(I)和向量组(Ⅱ)等价.但当a=一1时,有 [*] 则秩(α
1
,α
2
,α
3
)=2≠秩(α
1
,α
2
,α
3
)+1=秩(α
1
,α
2
,α
3
,β
1
)=3,故β
1
不能用α
1
,α
2
,α
3
线性表出.因而向量组(I)和向量组(Ⅱ)不等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/tJ04777K
0
考研数学一
相关试题推荐
(2017年)设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求
总体X的概率密度为f(x;σ)=σ∈(0,+∞),一∞<x<+∞,X1,X2,…,Xn为来自总体X的简单随机样本.(I)求σ的极大似然估计.(Ⅱ)求.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
已知方程组无解,则a=______。
求幂级数(|x|<1)的和函数S(x)及其极值.
求下列极限.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(2003年)过坐标原点作曲线y=Inx的切线,该切线与曲线.y=lnx及x轴围成平面图形D.求D的面积A;
(2016年)设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分
随机试题
新民主主义社会是一个独立的社会形态。()
Drawingapictureisthesimplestwayofputtinganideadownonpaper.Thatis【C1】______menfirstbegantowritesixthousandye
左上后牙牙龈肿痛2天,查见左上第一磨牙颊侧牙龈卵圆形肿胀,有波动感,袋深约8mm,牙髓活力正常,最可能的诊断是
建设工程最典型的价格形式是()。
【鲁尔危机】首都师范大学2001年近现代国际关系史真题;华中师范大学2018年世界史真题;中山大学2018年历史学真题
开发策略是根据()和工作内容而采取的行动方针和工作方法。
若有以下程序typedefstructstu{char*name,gender;intscore;}STU;voidf(char*p){p=(char*)malloc(10);strcpy(p,"Qian");}mai
Whatarethetwospeakerstalkingabout?
Thedoctorinformedhispatientthatthedrugwasvery_____andcanhaveunpleasantsideeffects.
Whyisincreaseinlivestockproductionnecessary?
最新回复
(
0
)