首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
admin
2020-03-16
38
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,向量b=α
1
+α
2
+α
3
+α
4
,求方程组Ax=b的通解。
选项
答案
已知α
2
,α
3
,α
4
线性无关,则r(A)≥3.又由a
1
,a
2
,a
3
线性相关可知a
1
,a
2
,a
3
,a
4
线性相关, 故r(A)≤3。 综上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 所以x=(1,一2,1,0)
T
是方程组Ax=0的基础解系。 又由b=a
1
+a
2
+a
3
+a
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为 x=c(1,1,1,1)
T
+c(1,一2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/tKA4777K
0
考研数学二
相关试题推荐
[2015年]若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz∣(0,0)=________.
[2012年]证明xln(一1<x<1).
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
(94年)求微分方程y"+a2y=sinx的通解,其中常数a>0.
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。计算PTDP,其中
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。计算行列式|A+E|。
随机试题
向十二指肠内注入大量HCl可引起
路面底面以下()cm范围内的路基部分称为路床。
不同建筑类别、建筑规模和使用部位的装修材料,燃烧性能等级的要求不同,主要分为不燃性、难燃性、可燃性和易燃性等四个等级,下列不属于其设定的原则有()。
孙老师把没有按时完成作业的学生赶到操场上,让他们在冷风中把作业写完,说要让学生明白学习的艰辛。这说明,孙老师没有做到()。
德育过程中贯彻因材施教原则的要求有哪些?
近代以来,人类的技术发展过程与古代不同。古代技术发展只是偶发事件,如火药、指南针等,尽管在军事史上产生过重大影响,由于结构简单,后续没有重大改进。而近代技术则不然,从织布机到蒸汽机,进而到内燃机、电动机,技术的进步是连续的,也是一个可期待的线性过程,因此可
张老师的班里有60个学生,男女生各一半。有40个学生喜欢数学;有50个学生喜欢语文。如果上述陈述为真,那么以下哪项可能是真的?I.20个男生喜欢数学而不喜欢语文。Ⅱ.20个喜欢语文的男生不喜欢数学。Ⅲ.30个喜欢语文的女生不喜欢数学。
计算,其中D:x2+y2≤a2≥0,y≥0).
在VisualBasic的立即窗口内输入以下语句X=65?Chr$(X)在窗口中显示的结果是_________。
Alargepartofeffectiveleadershipisdependentonsomethingcalled"style".Butstyleisdifficulttoteach,andwhatmakes
最新回复
(
0
)