首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
admin
2019-03-14
33
问题
已知P
-1
AP=
,α
1
是矩阵A属于特征值λ=1的特征向量,α
2
与α
3
是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,一α
2
,α
3
)。
B、(α
1
,α
2
+α
3
,α
2
—2α
3
)。
C、(α
1
,α
3
,α
2
)。
D、(α
1
+α
2
,α
1
一α
2
,α
3
)。
答案
D
解析
若P
-1
AP=
,P=(α
1
,α
2
,α
3
),则有AP=PA,即
(Aα
1
,Aα
2
,Aα
3
)=(λ
1
α
1
,λ
2
α
2
,λ
3
α
3
),
可见α
i
是矩阵A属于特征值λ
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关。
若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故选项A正确。
若α,β是属于特征值λ的特征向量,则α与β的线性组合仍是属于特征值λ的特征向量。本题中,α
2
,α
3
是属于λ=5的线性无关的特征向量,故α
2
+α
3
,α
2
一2α
3
仍是λ=5的特征向量,并且α
2
+α
3
,α
2
一2α
3
线性无关,故选项B正确。
对于选项C,因为α
2
,α
3
均是λ=5的特征向量,所以α
2
与α
3
谁在前谁在后均正确。故选项C正确。
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
一α
2
不再是矩阵A的特征向量,故选项D错误。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/tKj4777K
0
考研数学二
相关试题推荐
求下列不定积分:
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解.
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,aα2,…,αs,β中任意s个向量线性无关.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
设A为n阶实对称矩阵,下列结论不正确的是().
随机试题
支气管哮喘有别于心源性哮喘的临床表现是
A.干姜B.附子C.肉桂D.山茱萸E.吴茱萸治疗寒凝瘀滞经闭、痛经,宜选用的中药是
A.手足抽搐B.窒息C.声音嘶哑D.音调低沉E.高热、脉快
为防止在工程设施周边进行对工程设施安全有不良影响的其他活动,满足工程安全需要而划定的范围为()。
6月至8月,M上市公司发生的交易性金融资产业务如下:(1)6月1日,向H证券公司划出投资款1000万元,款项已通过开户行转入H证券公司银行账户。(2)6月2日,委托H证券公司购入N上市公司股票100万股,每股8元,另发生相关的交易费用2万元,并将该股票
现代服务业具有智力型、技术型、知识产权化和高附加值的特征。据统计,服务业每万元增加值的用电量、占有资本分别约为工业的15%和60%。这表明()。①现代服务业成为了具有竞争力的支柱产业②发展现代服务业有利于资源节约和环境保护③发展现代服务业有利于推
提出“尊德性、道问学、致广大、尽精微”观点的美术教育家是()
全球最大的人力资源咨询管理公司美世咨询发布的《中国和印度:人力资源比较优势》报告指出,中国北京和上海企业高级管理人员和经理的薪资水平,是印度同等职位的两倍以上,虽然低级别职位上的薪资差异不大,但中国整体薪酬水平仍大大高于印度。该报告涵盖了在中印经营的600
设F(x)=,则F(x)().
将E-R图转换到关系模式时,实体与联系都可以表示成()。
最新回复
(
0
)