首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(χ)=(2-t)e-tdt的最值.
求函数f(χ)=(2-t)e-tdt的最值.
admin
2019-07-22
32
问题
求函数f(χ)=
(2-t)e
-t
dt的最值.
选项
答案
由于f(χ)是偶函数,我们只需考察χ∈[0,+∞).由变限积分求导公式得 f′(χ)=2χ(2-χ)[*]. 解f′(χ)=0得χ=0与χ=[*],于是 [*] 从而,f(χ)的最大值是 f([*])=∫
0
2
(2-t)e
-t
dt=-∫
0
2
(2-t)de
-t
=(t-2)e
-t
|
0
2
-∫
0
2
e
-t
dt =2+e
-t
|
0
2
=1+e
-2
. 由上述单调性分析,为求最小值,只需比较f(0)与[*]f(χ)的大小.由于 [*] 因此f(0)=0是最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/tLN4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)=|χ3-1|g(χ),其中g(χ)连续,则g(1)=0是f(χ)在χ=1处可导的().
设f′(χ0)=f〞(χ0)=0,f″′(χ0)>0,则下列正确的是().
设A,B为n阶矩阵,则下列结论正确的是().
设函数f(χ)在|χ|<δ内有定义且|f(χ)|≤χ2,则f(χ)在χ=0处().
求微分方程cosy-cosχsin2y=siny的通解.
曲线y=(χ-1)(χ-2)和χ轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:拉格朗日微分中值定理:至少存在一点ξ∈(a,b)使
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系.
设f(x)在[0,1]上连续,(0,1)内可导,且试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
随机试题
阅读《说笑》的第一段:自从幽默文学提倡以来,卖笑变成了文人的职业。幽默当然用笑来发泄,但是笑未必就表示着幽默。刘继庄《广阳杂记》云:“驴鸣似哭,马嘶如笑。”而马并不以幽默名家,大约因为脸太长的缘故。老实说,一大部分人的笑,也只等于马鸣萧萧,充不得
She’supstairs______letters.
全身性皮肤瘙痒中,下列哪项是正确的
“一夫法”是指将食、中、无名、小指相并,四横指的间距为3寸,其量取标准应按
具酸碱两性的生物碱是
监理工程师在收到承包方送交的索赔报告和有关资料后,于( )天内给予答复。
清代功举办过几次的“千叟宴”,是清宫中的规模最大、与宴者最多的盛大御宴。()
关于凸极同步发电机短路,下列说法正确的有()。
在数据库中,产生数据不一致的根本原因是()。
法国古典主义的奠基之作是_______,所谓“熙德”即阿拉伯语_______之意。
最新回复
(
0
)