首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)=r()=r
设A为m×n矩阵,且r(A)=r()=r
admin
2022-04-10
45
问题
设A为m×n矩阵,且r(A)=r(
)=r
=(A
b).
(I)证明方程组AX=b有且仅有n一r+1个线性无关解;
(Ⅱ)
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(I)令ξ
1
,ξ
2
,…,[*]为Ax=0的基础解系,η
0
为Ax=b的特解,显然β
0
=η
0
, β
1
=ξ
1
+η
0
,[*]为Ax=b的一组解,令[*]=0,即 [*]+(k
0
+k
1
+…+[*])η
0
=0. 上式左乘A得(k
0
+k
1
+…+[*])=0,因为b≠0时,k
0
+k
1
+…+[*]=0,于是k
1
β
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
,因为ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关. 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…[*]一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+[*]=0,则 k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
-(k
1
+k
2
+…+k
n-r+1
)γ
0
=0 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解 (Ⅱ)令A=[*] 则[*]化为AX=β因为Ax=β有三个非零解,所以AX=0有两个非零解,故4-r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=r([*])=2 [*] 则a=-3,b=-1 由[*]得原撇的通解为 [*]其中k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/tQR4777K
0
考研数学三
相关试题推荐
设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y为多少时,产量Q最大,并求最大产量.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值。
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
求幂级数的收敛域及和函数S(x)。
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
求及arctanx的麦克劳林级数.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
随机试题
男,5岁,于夏季突然出现高热,2小时后抽搐,面色灰暗,四肢凉,血压下降,心肺未见异常,脑膜刺激征阴性。最可能的诊断为
胫骨干中1/3骨折,容易发生
外科慢性感染是指病程
用手指较轻的力按在寸口体察脉象称为用手指较重的力按在寸口体察脉象称为
对施工单位的工程文件的形成、积累、立卷归档工作进行监督、检查是( )的职责。
“尽信书,则不如无书”出自________.
甲与乙订立货物买卖合同,约定甲于1月8日交货,乙在交货期后的一周内付款。交货期届满时,甲发现乙有转移资产以逃避债务的行为。对此甲可依法行使()。
A、 B、 C、 D、 A原数列可转化为分子为递推和数列,下一项的分子应为5+3=8;分母两两做商后可得到数列1,2,3,可知下一项的分母应为6×4=24。所以正确答案应为故选A。
A、HarryPorter.B、PiratesoftheCaribbean.C、Titanic.D、TheMatrix.B本题为细节题。根据新闻内容(Thatputitaheadofthepreviousrecordde
Eachandeveryoneofusisresponsibleforthegreenhousegaseswesendinourdailyactionsandchoices.【C1】______,combating
最新回复
(
0
)