首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)=r()=r
设A为m×n矩阵,且r(A)=r()=r
admin
2022-04-10
76
问题
设A为m×n矩阵,且r(A)=r(
)=r
=(A
b).
(I)证明方程组AX=b有且仅有n一r+1个线性无关解;
(Ⅱ)
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(I)令ξ
1
,ξ
2
,…,[*]为Ax=0的基础解系,η
0
为Ax=b的特解,显然β
0
=η
0
, β
1
=ξ
1
+η
0
,[*]为Ax=b的一组解,令[*]=0,即 [*]+(k
0
+k
1
+…+[*])η
0
=0. 上式左乘A得(k
0
+k
1
+…+[*])=0,因为b≠0时,k
0
+k
1
+…+[*]=0,于是k
1
β
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
,因为ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关. 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…[*]一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+[*]=0,则 k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
-(k
1
+k
2
+…+k
n-r+1
)γ
0
=0 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解 (Ⅱ)令A=[*] 则[*]化为AX=β因为Ax=β有三个非零解,所以AX=0有两个非零解,故4-r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=r([*])=2 [*] 则a=-3,b=-1 由[*]得原撇的通解为 [*]其中k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/tQR4777K
0
考研数学三
相关试题推荐
设试求α,β的值.
设f(x)二阶可导,=1且f"(x)>0.证明:当x≠0时,f(x)>x.
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线.y=f(x)相交于点C(c,f©其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f’’(ξ)=0.
求∫arcsin2xdx.
设dt=∫0xcos(x一t)2dt确定y为x的函数,求
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b—a1+a2+a3+a4,求方程组Ax=b的通解。
求及arctanx的麦克劳林级数.
随机试题
平板对接横焊时,焊接电流比立焊时稍小一些。
我国是怎样对资本主义工商业进行社会主义改造的?
病犬舔咬肛门,从肛周流出脓液和粪便,则该病最可能是
铸造设备就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的能用到的所有机械设备,主要包括()。
按子项目组成编制的施工成本计划,首先要把项目总施工成本分解到()和单位工程中去。
中国证券监督管理委员会公布的基金“一对多”合同内容与格式准则规定,每个客户准入门槛不得低于()。
(21006年真题)作为产品,出版物的特点有()等。
已知3个类O,P和Q,类O中定义了一个私有方法F1和一个公有方法F2,类P中定义了一个公有方法F3,类P为类O的派生类,类Q为类P的派生类,它们的继承方式如下所示:classP:pubhcO{…}classQ:PnvateP{…}
下面有一段程序代码,如果从键盘上输入“Computer”,则在文本框内显示的内容是PrivateSubText1_KeyPress(KeyAsciiAsInteger) IfKeyAscii>=65AndKeyAscii<=
To:AllstaffFrom:PersonnelDept.Date:December26th,2008Subject:AppointmentofaNewVicePresidentYouwillbepleas
最新回复
(
0
)