首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)=r()=r
设A为m×n矩阵,且r(A)=r()=r
admin
2022-04-10
48
问题
设A为m×n矩阵,且r(A)=r(
)=r
=(A
b).
(I)证明方程组AX=b有且仅有n一r+1个线性无关解;
(Ⅱ)
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(I)令ξ
1
,ξ
2
,…,[*]为Ax=0的基础解系,η
0
为Ax=b的特解,显然β
0
=η
0
, β
1
=ξ
1
+η
0
,[*]为Ax=b的一组解,令[*]=0,即 [*]+(k
0
+k
1
+…+[*])η
0
=0. 上式左乘A得(k
0
+k
1
+…+[*])=0,因为b≠0时,k
0
+k
1
+…+[*]=0,于是k
1
β
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
,因为ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关. 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…[*]一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+[*]=0,则 k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
-(k
1
+k
2
+…+k
n-r+1
)γ
0
=0 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解 (Ⅱ)令A=[*] 则[*]化为AX=β因为Ax=β有三个非零解,所以AX=0有两个非零解,故4-r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=r([*])=2 [*] 则a=-3,b=-1 由[*]得原撇的通解为 [*]其中k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/tQR4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设dt=∫0xcos(x一t)2dt确定y为x的函数,求
设求矩阵A可对角化的概率.
随机试题
即使发现财产丢失也不得对顾客搜身最符合()。
在有效积温法则公式K=N(T-C)中,代表生物学零度的是()
妊娠期间,母体的生理变化对麻醉的影响表现在
胃癌最常见的症状是()
A.1~2mmB.2~3mmC.2~4mmD.0.5mm以下E.5~10mm直片厚度为()
在一国际贷款中,甲银行向贷款银行乙出具了备用信用证,后借款人丙公司称贷款协议无效,拒绝履约。乙银行向甲银行出示了丙公司的违约证明,要求甲银行付款。依相关规则,下列哪些选项是正确的?
组建项目监理组织时,应当注意到( )。
现浇混凝土结构的整体性好,延性好,适用于抗震抗爆结构,同时防振性和防辐射性能较好,适用于()。钢结构防火涂料按涂层厚度可分为B、H两类。其中H类为厚涂型钢结构防火涂料,涂层厚度一般为()。
依据《中华人民共和国注册会计师法》的规定,合伙会计师事务所以会计师事务所的全部资产对其债务承担责任,不足部分由当事合伙人承担无限责任。 ( )
随着社会文明程度的提高,女性的才能在传媒、大学、科研和金融等高度理性的行业,不仅获得更大的展示空间,而且也帮助她们创造了越来越多的骄人业绩。当然,妻子和母亲角色,仍然限制着女性潜能的发展发挥。因此,一个成功女性背后往往是她那旁人难以体会的艰辛。这段
最新回复
(
0
)