首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-07-13
42
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为_____.
选项
答案
①,③,④.
解析
①直接从定理3.2得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/tRc4777K
0
考研数学一
相关试题推荐
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设B是3阶非零矩阵,且AB=O,则Ax=0的通解是______.
=_______.
已知|a|=1,则|a+b|=()
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
说明下列事实的几何意义:(Ⅰ)函数f(x),g(x)在点x=x0处可导,且f(x0)=g(x0),f’(x0)=g’(x0);(Ⅱ)函数y=f(x)在点x=x0处连续,且有=∞.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=0.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=A.
随机试题
药物发生不良反应,组织鉴定的时间是药品需检验的,检验报告发出后作出行政处理决定的时间是
我国国家主席、副主席每届任期为________。
WomenandSportsNowadays,womenintheUnitedStatesandmanyothercountriesparticipateinagrowingnumberofsportsand
对老年复发性腹股沟疝,最好的手术方法是
心室内压达到最高是在房室瓣关闭发生于
某元素X的最高价氧化物的分子式为X2O5,在它的气态氢化物中含氢3.85%,则该元素的原子量为()。
清政府的中央警察机关是()
一般的日用工业品市场和副食品市场接近()。
(Itis)extremelyimportant(for)anengineer(toknow)(touseacomputer).
Decemberisoftenthemonththatpeoplespend,spend,spend.Now,withJanuaryunderway,it’stimetopaythosebills,tighteno
最新回复
(
0
)