首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则( ).
[2010年] 设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则( ).
admin
2019-03-30
97
问题
[2010年] 设y
1
,y
2
是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是该方程对应的齐次方程的解,则( ).
选项
A、λ=1/2,μ1=1/2
B、λ=一1/2,μ=一1/2
C、λ=2/3,μ=1/3
D、λ=2/3,μ=2/3
答案
A
解析
解一 因λy
1
-μy
2
是y’+p(x)y=0的解,故
(λy
1
-μy
2
)’+p(x)(λy
1
-μy
2
)=λ(y
1
’+p(x)y
1
)-μ(y
2
’+p(x)y
2
)=0.
又 y
1
’+p(x)y
1
=q(x), y
2
’+p(x)y
2
=q(x),
故 λq(x)-μq(x)=(λ-μ)q(x)=0.
而q(x)≠0,故λ-μ=0,即λ=μ.
又λy
1
+μy
2
为y’+p(x)y=q(x)的解,故
(λy
1
+μy
2
)’+p(x)(λy
1
+μy
2
)=λ[y
1
’+p(x)y
1
]+μ[y
2
’+p(x)y
2
]=λq(x)+μq(x)=(λ+μ)q(x)=q(x).
因q(x)≠0,故λ+μ=1.由λ=μ得到λ=μ=1/2.仅(A)入选.
解二 y
1
与y
2
为方程y’+p(x)y=q(x)的解,又已知λy
1
+μy
2
也是该方程的解,则由命题1.6.1.1(1)知,λ+μ=1.又由λy
1
-μy
2
是该方程对应的齐次方程的解,由命题1.6.1.1(2)知,λ+(-μ)=λ-μ=0,即λ=μ.联立λ=μ,λ+μ=1解得λ=μ=1/2.仅(A)入选.
(注:命题1.6.1.1 (1)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=1时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=q(x)的解.
(2)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=0时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=0的解.
特别地,若y
1
,y
2
为y’+p(x)y=q(x)的两个解,则y
2
-y
1
为y’+p(x)y=0的解.)
转载请注明原文地址:https://kaotiyun.com/show/taP4777K
0
考研数学三
相关试题推荐
设[0,4]区间上y=f(x)的导函数的图形如图1—2—1所示,则f(x)()
已知方程组有解,证明:方程组无解。
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明:(Ⅰ)α1能由α2,α3线性表示;(Ⅱ)α4不能由α1,α2,α3线性表示。
齐次方程组有非零解,则λ=________。
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0).(2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与z轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=______.
计算下列定积分:
随机试题
论述管理者和领导者。
关于反映心室舒张功能减低的指标,不包括
互感器的作用有( )。
锅炉受热面施工中采用横卧式组合形式,相对于直立式组合的缺点是()。
在建设项目费用中,()是建设项目其他费用中的一部分。
()既是基金合同的当事人,又是基金的主要服务机构。
如果企业欲降低某种产品的盈亏临界点销售量,在其他条件不变的情况下,可以采取的措施不包括()。
“两个黄鹂鸣翠柳,一行白鹭上青天。窗含西岭千秋雪,门泊东吴万里船”描写的景象位于()。
西方现代舞的创始人是()。
Americansseemtobecoolingtowardglobalwarming.Just57percentthinkthereissolidevidencetheworldisgettingwarmer,d
最新回复
(
0
)