首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1). (1)求X的数学期望EX(记EX为b); (2)求μ的置信度为0.95的置信区间; (3)利用上述结果求b的置
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1). (1)求X的数学期望EX(记EX为b); (2)求μ的置信度为0.95的置信区间; (3)利用上述结果求b的置
admin
2019-05-11
148
问题
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1).
(1)求X的数学期望EX(记EX为b);
(2)求μ的置信度为0.95的置信区间;
(3)利用上述结果求b的置信度为0.95的置信区间.
选项
答案
(1)b=EX=Ee
Y
=[*] 记y-μ=t,作积分变量代换,得 [*] (2)取自总体Y的样本值为:y
1
=ln0.5,y
2
=Inl.25,y
3
=ln0.8,y
4
=ln2,则μ的置信度为1-α的置信区间为: [*] 本题中σ
0
=1,n=4,α=0.05,[*]=u
0.975
=1.96 而[*](ln0.5+In1.25+ln0.8+ln2) =[*]ln(0.5×1.25×0.8×2)=[*]ln1=0 代入得μ的置信度为0.95的置信区间为 (0-1.96×[*],0+1.96×[*])=(-0.98,0.98)
解析
转载请注明原文地址:https://kaotiyun.com/show/tbJ4777K
0
考研数学三
相关试题推荐
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立。Y为中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设随机变量X和Y独立同分布,已知P{X=k}=p(1一p)k—1,k=1,2,…,0<p<1,则P{X>Y}的值为()
设随机变量X1,Xn,…相互独立,记Yn=X2n一X2n—1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn:n≥1}()
设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则根据切比雪夫不等式有P{0<x+y<10}≥________。
设X表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则X2的数学期望E(X2)=________。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
设A,B,C为随机事件,且A发生必导致B与C最多有一个发生,则有()
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
令[*]对[*]两边积分得[*]于是[*]故[*]
随机试题
简述品牌化决策。
小儿腹泻轻度脱水,丢失水分占体重的()。
腰椎间盘突出症最常发生于
请认真阅读下列材料.并按要求作答。材料:请你把自己想象成大自然中的一员,你可以把自己当成一种植物或一种动物,也可以当成一种自然现象;想想它们在大自然中是怎样生活或变化的,想象它们眼中的世界是什么样的,并融入自己的感受写下来。请根据上述述
下列属于儿童社会适应性的是()
Canyougiveaconcreteexampletosupportyouridea?
WhatdoWeknowabouttheWeather?
WhichTHREEthingsdoesCesarrecommendbringing?AbinocularsBcameraCpenknifeDmapEraincoatFmobilephone
A、Becauseofthegreatamountofratsshecaught.B、Becauseofhergoodmanner.C、Becauseofhersuddenattackontheburglars.
ThestudywaswrittenandresearchedbyBritain’sNationalConsumerCouncil(NCC)forlobbygroupConsumerInternational.Itwas【C
最新回复
(
0
)