首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2018-04-15
35
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且
证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令[*]因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得 F′(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x—x)f(x)恒正或恒负,于是[*] 而[*]矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
2, 由罗尔定理,存在ξ∈(x,π)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tcX4777K
0
考研数学三
相关试题推荐
设随机变量X1,X2,…,Xn相互独立,且都在区间(-1,1)上服从均匀分布,则()
设A,B是n阶可逆矩阵,满足AB=A+B,则下面命题中正确的个数是()①|A+B|=|A||B|②(AB)-1=B-1A-1③(A-E)x=0只有零解④B-E不可逆
差分方程yt+1+2yt=5t2的通解为________.
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
已知下列非齐次线性方程组当方程组(b)中的参数a,b,c为何值时,方程组(a)与(b)同解.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,b)内f(x)>0;
设a为正常数,f(x)=xea—aex—x+a. 证明:当z>a时f(x)<0.
设平面区域D用极坐标表示为
设g(x)在x=0的某邻域内连续且.又设f(x)在该邻域内存在二阶导数且满足x2f"(x)一[f’(x)]2=xg(x).则()
由曲线y=1一(x一1)2及直线y=0围成图形(如图3—1所示)绕y轴旋转而成的立体的体积V是()
随机试题
创建系统的分析模型是为了解决系统用况模型中存在的__________和__________等问题。
上消化道出血病因诊断的首选检查措施为
此病变部位为进一步确诊应行
威灵仙具有以下哪些特征
未取得或者超过有效期使用《互联网药品信息服务资格证书》,从事提供互联网药品信息服务的,由( )。
企业应当采用追溯重述法更正所有的前期差错。()
在Excel中,下列运算符()可将两个单元格中的字符或字符串连接起来。
测验总分的分布呈正偏态,说明测验整体难度
亚马逊丛林中的雄性蓝蝶带有彩虹般的蓝色光辉,半公里外就能看到。其光辉如此强烈,有的竟能反射70%的蓝色光线,远远超过蓝色涂料的反射率。蓝蝶耀眼的光辉,原是一种警号,使别的雄性蓝蝶在远处就能知所趋避。蓝光越强,示警作用越显著。物竞天择,适者生存,亿万年的自然
Childrenlearnalmostnothingfromtelevision,andthemoretheywatchthelesstheyremember.Theyregardtelevisionpurely【C1】
最新回复
(
0
)