首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
admin
2019-05-11
70
问题
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=
且AB=O,求方程组AX=0的通解.
选项
答案
由AB=O得r(A)+r(b)≤3且r(A)≥1. (1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为k
1
[*]+k
2
[*](k
1
,k
2
为任意常数); (2)当k=9时,r(B)=1,1≤r(A)≤2, 当r(A)=2时,方程组AX=0的通解为C[*](C为任意常数); 当r(A)=1时,A的任意两行都成比例,不妨设a≠0, 由A→[*],得通解为k
1
[*]+k
2
[*](k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/tfV4777K
0
考研数学二
相关试题推荐
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
求u=χ2+y2+z2在约束条件,下的最小值和最大值.
设f(χ)连续,且f(0)=0,f′(0)≠0.求,其中D:χ2+y2≤t2.
设f(χ)在[-1,1]上可导,f(χ)在χ=0处二阶可导,且f′(0)=0,f〞(0)=4.求
设函数f(χ)在|χ|<δ内有定义且|f(χ)|≤χ2,则f(χ)在χ=0处().
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
设f’(x)=arcsin(x一1)2且f(0)=0,求I=∫01f(x)dx.
建一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,要做多少功?(假设在球从水中取出的过程中水面的高度不变.)
随机试题
冷原子吸收法测定粮食中的汞时,为了使汞保持氧化态,避免汞挥发损失,在消化样品时,()溶液应过量。
适用于呼吸道隔离的传染病是
男性,28岁。发作性血压增高,最高达230/130mmHg,伴心悸、头痛、面色苍白,持续十几分钟后可自行缓解。初步诊断为
审核原始凭证记录的经济业务是否符合企业生产经营活动的需要、是否符合有关计划和预算,属于合理性审核。()
梁女士20岁时在某保险公司为自己投保了一份20年期,保额50万元,并含有可续保条款的定期寿险,每年缴纳保费450元,投保该定期寿险的年龄范围为16周岁至55周岁。根据以上描述,下列情形可能发生的是()。
京剧四大名旦中,最擅长表演《贵妃醉酒》的艺术家是()。
学校刚装修过,学生有不良反应,校长拿出了检测报告,报告显示没问题,于是家长来到教育局门前讨说法。你是教育局的工作人员,你怎么办?
有下列SQLSELECT语句:SELECT*FROM工资表WHERE基本工资=1000下列与该语句等价的是()。
A、Workasaflightattendant.B、Helpmakeairplanes.C、Makecontractsforacompany.D、Mendaircraftengines.C
A、Itisthewoman’shometown.B、Thewoman’sparentswillhavecelebrationthere.C、Thewomanwenttouniversitythere.D、Thewom
最新回复
(
0
)