首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
admin
2018-11-20
41
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(x
1
,x
2
,x
3
)化为标准形.
(3)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. [*] (2)|λE—A|=[*]=λ(λ一2)
2
, 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A一2E)X=0的同解方程组x
1
一x
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 方程x
1
一x
2
=0的系数向量(1,一1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 [*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 [*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
于是f(x
1
,x
2
,x
3
)=0[*] 求得通解为:[*]c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/tfW4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组Ax=0与BX=0有公共的非零解.
设连续型随机变量X的分布函数为F(x)=求
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
向量组α1,αs线性无关的充要条件是().
向量组α1,α2,…,αm线性无关的充分必要条件是().
10件产品中4件为次品,6件为正品,现抽取2件产品.逐个抽取,求第二件为正品的概率.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后放回.
质量为lg的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
已知二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2bx2x3+2x1x3经正交变换化为标准形f(x1,x2,x3)=y22+2y32,则a,b取值为________.
随机试题
()不是设备监理工程师应履行的义务。
某外资电子器材有限公司从社会上招收了6名工人,其中有2名14岁的工人,另有1名妇女因性别差异而未被招用,还有1名正在休产假的妇女被同时辞退,职工要求组织工会亦被拒绝。下列选项所述该公司的做法中。错误的是()
_______是检查教师教学效果的必要手段,其目的是改进教学工作。()
某精神病患者,医生问其多大年龄时,患者回答:“33,三月初三生,三月里来桃花开,开花又结果,摘了果子给猴吃……”。此表现属于
具有特定情形的下列哪些证据不能作为定案的根据?()
技术分析理论可以分为以下哪些类型()
甲和乙共同出资设立了茂昌有限责任公司,在下列公司章程条款中,符合《公司法》规定的有( )。
下列哪些行为属于盗窃?()
计算机中十六位浮点数的表示格式为某机器码为1110001010000000,若阶码为移码且尾数为反码,则其十进制真值为(7);若阶码为移码且尾数为原码,则其十进制
Internationalgovernments’inactionconcerningsustainabledevelopmentisclearlyworryingbuttheproactive(主动出击的)approaches
最新回复
(
0
)