首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
admin
2018-11-20
33
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(x
1
,x
2
,x
3
)化为标准形.
(3)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. [*] (2)|λE—A|=[*]=λ(λ一2)
2
, 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A一2E)X=0的同解方程组x
1
一x
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 方程x
1
一x
2
=0的系数向量(1,一1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 [*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 [*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
于是f(x
1
,x
2
,x
3
)=0[*] 求得通解为:[*]c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/tfW4777K
0
考研数学三
相关试题推荐
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组B=0与ABX=0是同解方程组.
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
向量组α1,α2,…,αm线性无关的充分必要条件是().
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a一2,a一1,则a=________.
设有三个线性无关的特征向量,则a=________.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求矩阵A.
设函数y=y(x)由方程组
设A=已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
随机试题
里甲制
对于酶的叙述,恰当的是
病例对照研究方法探讨饮食与冠心病的关系时,经常出现的偏倚是以前瞻性队列研究方法探讨饮食与脑卒中的关系时,经常出现的偏倚是
下列合同中,应按财产租赁合同计税贴花的有()。
公有制包括全民所有制和集体所有制,其中家庭联产承包责任制属于典型的集体所有制形式。()
根据《中华人民共和国企业劳动争议处理条例》,我国目前处理劳动争议的机构不包括()。
亲生父母双方都有高血压的人,得高血压的几率是亲生父母都没有高血压的人的5倍。所以,高血压可能是一种遗传病。下列哪项为真,最能支持上述结论?
艺术不是象牙塔里的________,所谓的“为艺术而艺术”.说到底不过是唯美主义________的志向。自古以来,艺术就是与政治、经济、信仰等种种意识形态因素甚至流行时尚有着千丝万缕的关系。依次填入画横线部分最恰当的一项是()。
假设消费者均衡如图1-4所示,横纵轴分别表示商品X,Y的数量x,y,线段AB是预算线,V是无差异曲线,e点是消费者效用最大化均衡点,已知Px=2元,求:收入、PY、预算线方程、e点的MRSXY。[上海大学895现代经济学2012研]
Officialhealthadvicethatsaidhouseholdchoreshelpkeepyouactivehasbeenprovedwrongbytheresearch,whichshowsthatt
最新回复
(
0
)