设A是正交矩阵,且|A|<0.证明:|E+A|=0.

admin2019-07-19  11

问题 设A是正交矩阵,且|A|<0.证明:|E+A|=0.

选项

答案因为A是正交矩阵,所以ATA=E,两边取行列式得|A|2=1,因为|A|<0,所以|A|=-1. 由|E+A|=|ATA+A|=|(AT+E)A|={A||AT+E|=-|AT+E| =-|(A+E)|T=-|E+A| 得|E+A|=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/tfc4777K
0

最新回复(0)