首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
admin
2017-06-26
125
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bχ=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bχ=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bχ=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bχ=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bχ=0的n-r个线性无关解向量,从而可作为Bχ=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tjH4777K
0
考研数学三
相关试题推荐
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=________.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
随机试题
Word文档中,创建表格的方式不正确的是()。
当申报的成交价格明显低于正常的市场价时,应以()作为缴纳税费的依据。
现配制试配强度为42.23MPa的混凝土,选用水泥的实际强度为52MPa,粗骨料为5~40mm粒径的碎石,回归系数αa=0.46,αb=0.06,则所需水灰比为()。
企业的日常薪酬管理包括()。
案例:赵老师在上《动画作品设计制作》一课时,在简单讲解了动画的概念后,为学生展示播放了一集《猫和老鼠》,但播放完毕后距离下课只剩下十分钟。赵老师赶忙让学生以《龟兔赛跑》为题讨论并合作创作一则动画作品,学生到下课也没有完成作品。教师只好安排学生下课
人是会思考的芦苇.也是世界上唯一会运用逻辑推理的生物。环环相扣,________的逻辑推理,确实可以帮助我们进行正确的思考、研究和决策。在二战前著名的德国国会纵火案中,季米特洛夫的无罪辩护.就是利用自己娴熟的法律知识和________的逻辑推理,驳倒了法西
1
用于去掉一个字符串的右边的空白部分的函数是______。
Hamilah,theDoctorscookwasinawhirl(混乱,繁忙)ofgreatactivity.Shewascontinuallystickingherhead【C1】______ofthecookhou
Whatdeterminesthekindofpersonyouare?Whatfactorsmakeyoumoreorlessbold,intelligent,orabletoreadamap?Allof
最新回复
(
0
)