首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
admin
2017-06-26
91
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bχ=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bχ=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bχ=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bχ=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bχ=0的n-r个线性无关解向量,从而可作为Bχ=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tjH4777K
0
考研数学三
相关试题推荐
向量组a1,a2,…,am线性无关的充分必要条件是().
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=________.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
随机试题
商业银行最基本和最主要的职能是()
患者女性,65岁。因发现右侧乳房近乳头处包块半年来院就诊,既往体健。查体:右侧乳腺外上象限近乳头处可触及约3cm×1.5cm质硬肿物,肿物局部皮肤稍凹陷,无压痛,边界尚清,腋窝未触及明显肿大淋巴结。对明确诊断最有意义的检查项目是
颈椎斜位摄影,身体冠状面与台面夹角应为
眼内木屑属于
公路建设必须招标的项目有()。
对一栋建筑物内同一楼层上的采暖房间,当其开间大小相同时。哪个朝向的采暖负荷最大?
建筑消防性能化设计中,设计目标的性能判定标准包括生命安全标准和非生命安全标准两种,以下不属于非生命安全标准的是()。
组织提供的培训开发的价值取决于( )。
长江公司拥有一条由专利权A、设备B以及设备C组成的生产线,专门用于生产甲产品。该生产线于2011年1月投产,至2017年12月31日已连续生产7年。长江公司按照不同的生产线进行管理,甲产品存在活跃市场。生产线生产的甲产品,经包装机乙进行外包装后对外出售。
汉朝规定了官吏退休制度,退休被称为()
最新回复
(
0
)