首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 是齐次线性方程组Bχ=0的基础解系.
admin
2017-06-26
90
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bχ=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bχ=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bχ=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bχ=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bχ=0的n-r个线性无关解向量,从而可作为Bχ=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tjH4777K
0
考研数学三
相关试题推荐
向量组a1,a2,…,am线性无关的充分必要条件是().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=________.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
随机试题
在应对冲突危机时让患者消气最简单有效的方法是()
某教师回到办公室说:“二年二班的学生真笨,这堂课我连续讲了三遍,他们还是不会。我是发挥了教师的主导作用了,他们不会我有什么办法?”如何理解教师的主导作用?这位教师全面发挥了主导作用吗?
大黄苦寒,泻热通便,用于热结便秘泻火存阴
《合同法》规定的合同有效条件包括( )。
计算机病毒的特点包括()。
经济特区
某股份有限公司召开股东大会表决与另一公司合并事项。根据我国公司法,此项决议必须经该股份有限公司出席会议的股东所持表决权的()通过。
高层的互联设备是______。
Afour-yearstudybysociologistsatTheUniversityofManchesterhasfoundthatwomenaremuchlikelythanmento【M1】______mak
A、Tosetupamooncolonyby2020.B、Tosendastronautsagaintothemoonby2020.C、Tocontinuethecurrentshuttlemissionsti
最新回复
(
0
)