首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)求曲线y=xe—x在点(1,)处的切线方程; (Ⅱ)求曲线y=∫0x(t一1)(t一2)dt上点(0,0)处的切线方程; (Ⅲ)设曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,求常数a,b.
(Ⅰ)求曲线y=xe—x在点(1,)处的切线方程; (Ⅱ)求曲线y=∫0x(t一1)(t一2)dt上点(0,0)处的切线方程; (Ⅲ)设曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,求常数a,b.
admin
2020-03-10
87
问题
(Ⅰ)求曲线y=xe
—x
在点(1,
)处的切线方程;
(Ⅱ)求曲线y=∫
0
x
(t一1)(t一2)dt上点(0,0)处的切线方程;
(Ⅲ)设曲线y=x
2
+ax+b和2y=一1+xy
3
在点(1,一1)处相切,求常数a,b.
选项
答案
(Ⅰ)因为y’=(1一x)e
—x
,于是y’(1)=0.从而曲线y=xe
—x
在点(1,[*]). (Ⅱ)因y’(0)=[∫
0
x
(t—1)(t一2)dt]’|
x=0
=(x—1)(x一2)|
x=0
=2,于是曲线在点(0,0)处的切线方程是y=2x. (Ⅲ)曲线y=x
2
+ax+b过点(1,一1),所以1+a+b=一1,在点(1,一1)处切线的斜率为 y’=(x
2
+ax+b)|
x=0
=2+a. 将方程2y=一1+xy
3
对x求导得2y’=y
3
+3xy
2
y’.由此知,该曲线在点(1,一1)处的斜率y’(1)满足2y’(1)=(一1)
3
+3y’(1),解出得y’(1)=1.因这两条曲线在点(1,一1)处相切,所以在该点它们切线的斜率相同,即2+a=1,即a=一1.再由1+a+b=一1得b=一2—a=一1.因此a=一1,b=一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/tkD4777K
0
考研数学三
相关试题推荐
计算曲线积分:,L为球面x2+y2+z2=a2与平面x=y相交的圆周.
证明n阶矩阵相似.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设f(x)是连续函数,F(x)是f(x)的原函数,则
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
正项级数an2收敛的()
设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是()
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,则随机变量X+Y的分布函数()
随机试题
A.环磷酰胺B.柔红霉素C.甲氨蝶呤D.长春新碱E.全反式维甲酸其毒性可用甲酰四氢叶酸钙解救的是
接触性皮炎皮损的严重程度取决于以下因素,除了:
下列说法不正确的是
交接检验是由施工的完成方与承接方经双方检查、并对可否继续施工做出确认的活动。()
下列合同形式中不属于书面形式的是( )。
陕北民歌种类很多,其中以()最富有特色、最具代表性。
关于宇航员在太空的生活,下列说法不正确的是()。
(2007下项管)绩效报告过程的输出是______。
常规密钥密码体制又称为(1),它是指(2)的密码体制。属于常规密钥密码体制的密码是(3)。采用密钥流序列作为密钥序列的属于(4)。国际数据加密算法IDEA属于(5)。
LifeBeginsat100[A]Thisyear,thenumberofpensionersintheUKexceededthenumberofminorsforthefirsttimeinhistory.
最新回复
(
0
)