首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求原点到曲面(x一y)2+z2=1的最短距离。
求原点到曲面(x一y)2+z2=1的最短距离。
admin
2018-12-19
36
问题
求原点到曲面(x一y)
2
+z
2
=1的最短距离。
选项
答案
根据题意,求曲面上的点(x,y,z)到原点的距离[*]在条件(x
2
一y
2
)
2
+z
2
=1下达到最小值,运用拉格朗日函数法。令 F(x,y,z,λ)=x
2
+y
2
+z
2
+λ(x一y)
2
+λz
2
一λ, 则有 [*] 即得 [*] 由(3)式,若λ=一1,代入(1)式和(2)式得[*]解得x=0,y=0。代入曲面方程(x一y)
2
+z
2
=1,得到z
2
=1,d=1。 若λ≠一1,由(3)式解得z=0。由(1)式和(2)式得到x=一y。代入曲面方程(x一y)
2
+z
2
=1,得到 [*] 故所求的最短距离为[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/tkj4777K
0
考研数学二
相关试题推荐
设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,2]上的表达式;
设函数f(x)在区间[0,1]上连续,且求∫01dx∫x1f(x)f(y)dy
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=_____________.
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=,又α=且A*=μα.求|A*+3E|.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P一1AP=A.
求曲线χ=acos3t,y=asin3t绕直线y=χ旋转一周所得曲面的面积.
随机试题
刷牙时牙龈出血2年。检查:牙石(+),牙龈乳头及龈缘轻度水肿、色暗红,探诊出血,探诊深度2~3mm,未探及釉牙骨质界,未发现牙齿松动。该病最可能的诊断为
下述黏膜组织中,何处无黏膜下层
属于温热性药所示效用的是()。
脑血栓形成患者的CT图像为()
成本逼近法一般适用于有收益的商业物业的评估。
人类行为是个复杂系统,存在着各个不同的侧面,有外显的,有内隐的;有来自遗传的,有后天习得的;有生理范畴的,有社会属性的。这是人类行为的()特点,
学生操行评定的一般步骤是()。
以个人喜好为基础,带有明显情绪色彩的若干自发结合在一起的联合体是非正式群体。()
时间和空间“离开物质,当然都是无,都是只在我们头脑中存在的空洞的观念抽象”。这段话说明了
A、Sheisdeterminednottogetinvolvedasothers.B、Sheisworriedmoreaboutherstudythananythingelse.C、Sheisalittlea
最新回复
(
0
)