首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
admin
2019-08-12
30
问题
设向量组α
1
,α
2
,…,α
m
线性无关,β
1
可由α
1
,α
2
,…,α
m
线性表示,但β
2
不可由α
1
,α
2
,…,α
m
线性表示,则( ).
选项
A、α
1
,α
2
,…,α
m-1
,β
1
线性相关
B、α
1
,α
2
,…,α
m-1
,β
1
,β
2
线性相关
C、α
1
,α
2
,…,α
m
,β
1
+β
2
线性相关
D、α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关
答案
D
解析
(A)不对,因为β
1
可由向量组α
1
,α
2
,…,α
m
线性表示,但不一定能被α
1
,α
2
,…,α
m-1
线
性表示,所以α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关;
(B)不对,因为α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关,β
2
不一定可由α
1
,α
2
,…,α
m-1
,β
1
线性表
示,所以α
1
,α
2
,…,α
m-1
,β
1
,β
2
不一定线性相关;
(C)不对,因为β
2
不可由α
1
,α
2
,…,α
m
线性表示,而β
1
可由α
1
,α
2
,…,α
m
线性表示,所以β
1
+β
2
不可由α
1
,α
2
,…,α
m
线性表示,于是α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关,选(D)
转载请注明原文地址:https://kaotiyun.com/show/tlN4777K
0
考研数学二
相关试题推荐
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设4元齐次线性方程组(I)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(I)的一个基础解系;(2)当a为何值时,方程组(I)与(II)有非零公
求
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
已知一ax一b)=0,求a,b的值.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
计算积分:
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设方阵A满足条件ATA=E,其中AT是A的转置矩阵,E为单位阵.试证明A的实特征向量所对应的特征值的绝对值等于1.
随机试题
应当诊断为:治疗应首选的方剂是:
A.足以严重危害人体健康B.对人体健康造成轻度危害C.后果特别严重D.其他特别严重情节生产、销售的劣药被使用后,造成三人以上器官组织损伤导致严重功能障碍,应当认定为
气温低于()运输易冻的硝化甘油炸药时,应采取防冻措施。
路面标线根据涂料的种类可分为以下( )三种类型。
在用友报表系统中,如果要表示当前表的第8页,可以表示为“%8”。()
结合实际,论述当前加强和改善德育工作的意义并阐述德育与其他各育之间的关系。
I’mveryh____.Pleasegivemesomethingtoeat.
交警春节向司机发有交通知识的贺年片。对此。你怎么看?
她要么是语焉________,要么是含糊其辞,完全是“打太极”的外交辞令,让人________。填入画横线部分最恰当的一项是:
某企业为全体员工定制工作服,请服装公司的裁缝量体裁衣。裁缝每小时为52名男员工和35名女员工量尺寸。几小时后,刚好量完所有女员工的尺寸,这时还有24名男员工没量。若男员工与女员工的人数比为11:7,则该企业共有()名员工。
最新回复
(
0
)