首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
admin
2018-12-19
98
问题
对n元实二次型f=x
T
Ax,其中x=(x
1
,x
2
,…,x
n
)
T
。试证f在条件x
1
2
+x
2
2
+…+x
n
2
=1下的最大值恰好为矩阵A的最大特征值。
选项
答案
实二次型f=x
T
Ax所对应的矩阵A为实对称矩阵,则存在正交矩阵P使 P
T
AP=[*] 其中λ
i
(i=1,2,…,n)是矩阵A的特征值。作线性变换x=Py,其中y=(y
1
,y
2
,…,y
n
)
T
,则 x
1
2
+x
2
2
+…+x
n
2
=x
T
x=y
T
(P
T
P)y=y
T
y=y
1
2
+y
2
2
+…+y
n
2
, f=x
T
Ax=y
T
(P
T
AP)y=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
。 求f=x
T
Ax在条件x
T
x=1下的最大值可转化为求f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
在条件y
1
2
+y
2
2
+…+y
n
2
=1下的最大值。设c=max{λ
1
,λ
2
,…,λ
n
},则 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤c(y
1
2
+y
2
2
+…+y
n
2
)=c, 上式取y=(1,0,…,0)
T
时,等号成立,此时f取到最大值c。故在条件x
T
x=1下,f的最大值恰好为矩阵A的最大特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/MVj4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)连续,且满足
下列结论正确的是().
(2015年)设D是第一象限中由曲线2χy=1,4χy=1与直线y=χ,y=χ围成的平面区域,函数f(χ,y)在D上连续,则(χ,y)dχdy=【】
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(2010年)已知一个长方形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_______.
设∫xf(x)dx=arcsinx+C,则=_______
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
随机试题
简述刷涂操作特点。
氟牙症的临床特征是釉质发育不全的临床特征是
男,56岁。突发言语不清、跌倒在地。小便失禁,无肢体抽搐。急送至医院急诊室。体检:昏迷,瞳孔左侧6mm,右侧3mm,血压180/110mmHg,心率65次/min,律齐。最可能的诊断为
下列说法正确的是()。
港航工程混凝土的配制强度公式为:fcu,o=fcu,k+1.645σ式中fcu,o为()。
从事生产、经营的纳税人被宣告破产,按照规定应办理工商注销登记的,应当首先向工商行政管理机关注销登记,然后向原税务登记机关注销登记。 ( )
行政职权是行政主体实施国家行政管理活动的资格及权能,它不包括()。
如果企业定额管理基础好,各月末在产品数量变化不大,则该企业适宜采用的完工产品和在产品成本分配方法是()。
本票的持票人未按照规定期限提示本票的,丧失对出票人的追索权。()
下列选项中,不属于可以解聘教师的法定事由的是()。
最新回复
(
0
)