首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为A的特征向量. A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设为A的特征向量. A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-04-15
57
问题
设
为A的特征向量.
A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代入(λE—A)X=0得λ
1
=0对应的线性无关特征向量为[*] 将λ
2
=2代入(λE—A)X=0得λ
2
=2对应的线性无关特征向量为[*] 将λ
3
=3代入(λE—A)X=0得λ
3
=3对应的线性无关特征向量为[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tlX4777K
0
考研数学三
相关试题推荐
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α=3(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设a=(a1,a2,…,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
求下列积分.(2)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
设f(x)=,则f(x)的间断点为x=_____.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1)亏损的概率α;(2)一年获利润不少于40000元的概率β;(
设求a,b的值.
(88年)某保险公司多年的统计资料表明,在索赔中被盗索赔户占20%.以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X概率分布;(2)利用棣莫佛一拉普拉斯定理,求被盗索赔户不少于14户且不多于30户的概率的近似
随机试题
A、 B、 C、 D、 B
A.远志B.灵芝C.夜交藤D.酸枣仁治疗痈疽疮毒,乳房肿痛,喉痹,宜首选
少阳病转变为厥阴病.在六经传变中称为
原发性肾病综合征水肿的主要原因是
某化工厂因排放污水而致附近养殖户饲养的鱼遭受损失。下列有关表述哪些是错误的?()
下列企业改制重组行为中,需要缴纳契税的是()。
下列项目属于营业外收入核算内容的有()。
培养有理想、有道德、有文化、有纪律的社会主义新人,是我国社会主义精神文明建设的()。
习近平在庆祝改革开放40周年大会上的讲话中指出,五四运动以来我国发生的三大历史性事件,是近代以来实现中华民族伟大复兴的三大里程碑的是()
JamesMartin方法实施中,系统的开发策略考虑贯彻始终,下述()不在优先考虑之内。
最新回复
(
0
)