证明不等式: 当x∈时,x<tanx.

admin2021-07-15  44

问题 证明不等式:
当x∈时,x<tanx.

选项

答案令f(x)=tanx-x,则 f’(x)=sec2x-1=tan2x>0(0<x<[*]) 所以f(x)在区间[0,[*]]上严格单调增加,因此,当0<x<[*]时,f(0)<f(x),即x<tanx.

解析
转载请注明原文地址:https://kaotiyun.com/show/tmy4777K
0

最新回复(0)