设f(x)在[0,+∞)上连续,且满足方程 求f(t).

admin2019-01-05  19

问题 设f(x)在[0,+∞)上连续,且满足方程
        
  求f(t).

选项

答案首先把右端的二重积分化为定积分.设x=rcosθ,y=rsinθ,引入极坐标(r,θ),于是,在极坐标系(r,θ)中积分区域x2+y2≤4t2可表为0≤θ≤2π,0≤r≤2t,面积元dxdy=rdrdθ,[*]于是 [*] 再作换元[*]则有[*] 从而未知函数f(t)满足积分方程[*]令t=0得f(0)=1;用变上限定积分求导公式得 f’(t)=8πtf(t)+8πte44πt2. 由此可知f(t)是一阶线性微分方程y’一8πty=8πte44πt2满足初始条件y(0)=1的特解.解出可得 f(t)=(1+4πt2)e4πt2

解析
转载请注明原文地址:https://kaotiyun.com/show/trW4777K
0

最新回复(0)