首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,F(x)=∫0xt2f(t)dt,且F(1)=f(1),证明:在(0,1)内至少存在一点ξ,使得.
设f(x)在[0,1]上可导,F(x)=∫0xt2f(t)dt,且F(1)=f(1),证明:在(0,1)内至少存在一点ξ,使得.
admin
2022-09-05
103
问题
设f(x)在[0,1]上可导,F(x)=∫
0
x
t
2
f(t)dt,且F(1)=f(1),证明:在(0,1)内至少存在一点ξ,使得
.
选项
答案
由积分中值定理得:存在η∈[0,x],使F(x)=∫
0
x
t
2
f(t)dt=η
2
f(η)工,从而 F(1)=η
2
f(η)= f(1). 设G(x)=x
2
f(x),则G(1)= f(1),而G(η)=η
2
f(η)=f(1),从而G(1)=G(η). 对函数G(x)在[η,1][*][0,1]上使用罗尔定理得 至少存在一点ξ∈(0,1),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/twR4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
证明:xaxinxdx·a-cosxdx≥,其中a>0为常数.
将编号为1,2,3的三本书随意排列在书架上,求至少有一本书从左到右排列的序号与它的编号相同的概率.
若事件A1,A2,A3两两独立,则下列结论成立的是().
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设=,求a,b的值.
计算二重积分,其中D是由直线y=1、曲线y=x2(x≥0)以及y轴所围成的区域。
随机地向半圆内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴夹角小于的概率为_________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用上题的结论计算定积分
随机试题
下列对锁骨的描述,不正确的是()。
女,60岁。发现风湿性心脏病10余年。查体:双侧颊部皮肤呈紫红色,心界向左扩大,心腰膨隆,心率100次/分,心尖部可闻及开瓣音及舒张期隆隆样杂音。该患者查体还可能发现的其他阳性体征是()
疏散模型在处理疏散的一般问题时,均采用了三种不同基本方法,不包括()。
根据有关规定,债权人申请债务人破产应当向法院提交的诉讼材料有()。
下列财务分析指标中,其数值越大,表明企业偿债能力越强的有()。
根据文章判断对太阳风定义正确的一项是()。下列途径不能证实太阳风存在的一项是()。
(2009年单选40)清末司法改革后,全国的最高审判机关是()。
vateSubCommand1_Crick()DimmAsInteger,nAsIntegerm=1:n=0DoWbilem<20n=m+nm=3*m+1LoopPrintm,nEndSub程序运行后,单击命令按钮C
Despitemuchloosetalkaboutthenewglobaleconomy,today’sinternationaleconomicintegrationisnotunprecedented.The50ye
气候温暖潮湿
最新回复
(
0
)