首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有二阶连续导数,证明 ∫baf(x)dx﹦[f(a)﹢f(b)]﹢∫baf”(x)(x-a)(x-b)dx。
设f(x)在[a,b]上有二阶连续导数,证明 ∫baf(x)dx﹦[f(a)﹢f(b)]﹢∫baf”(x)(x-a)(x-b)dx。
admin
2019-01-22
34
问题
设f(x)在[a,b]上有二阶连续导数,证明
∫
b
a
f(x)dx﹦
[f(a)﹢f(b)]﹢
∫
b
a
f
”
(x)(x-a)(x-b)dx。
选项
答案
由分部积分法得 ∫
a
b
f(x)dx=∫
a
b
f(x)d(x-b) ﹦f(a)(b-a)-∫
a
b
f
’
(x)(x-b)d(x-a) ﹦f(a)(b-a)﹢∫
a
b
(x-a)d[f
’
(x)(x-b)] ﹦f(a)(b-a)﹢∫
a
b
(x-a)df(x)﹢∫
a
b
f
”
(x)(x-a)(x-b)dx ﹦f(a)(b-a)﹢f(b)(b-a)-∫
a
b
f(x)d(x-a)﹢∫
a
b
f
”
(x)(x-a)(x-b)dx, 移项并整理得 ∫
a
b
f(x)dx﹦[*](b-a)[f(a)﹢f(b)]﹢[*]∫
a
b
f
”
(x)(x-a)(x-b)dx。 本题考查定积分的求解。观察题目要证明的等式,我们可以发现等式右端的被积函数中包含f
”
(x)的形式,因此我们可以考虑使用分部积分法进行求解。同时,由于等式左端的被积函数是f(x),所以在求解过程中要多次使用分部积分法。
解析
转载请注明原文地址:https://kaotiyun.com/show/tyM4777K
0
考研数学一
相关试题推荐
已知αα1,αα2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设有某种零件共100个,其中10个是次品,其余为合格品.现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为______。
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(一y),且ρXY=记Z=X+Y,求E(Z),D(Z).
设平面Ⅱ经过平面Ⅱ1:3x一4y+6=0与Ⅱ2:2y+z一11=0的交线,且和Ⅱ1垂直,求Ⅱ的方程.
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为Ai,i=1,2,记事件A表示事件“a12≥4a2”,则该试验的样本空间Ω=______;事件A=______;概率P(A)=__
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
设3阶方阵A的特征值为λ1=2,λ2=-2,λ3=1;对应的特征向量依次为求A.
微分方程y’’+3y’+2y=e-x满足条件y(0)=1,y’(0)=1的特解为_________.
随机试题
(2019年招远)德育中对人的陶冶,其内涵就是环境陶冶。()
牙釉质为覆盖于牙冠表面的一层硬组织,其厚度
一山羊,因发热、食欲减退乃至不食,已发病2天而来医院就治。人院后查体温41.1℃,结膜潮红,在唇、鼻、颊、眼周围、四肢和尾内面,阴唇、阴囊包皮和乳房的皮肤上有红斑或淡红色或灰白色突出于皮肤表面的丘疹、脓疱。对该病的防控措施不当的是
25公斤小儿体表面积为
某投资项目工程费用为2000万元。建设期为2年,分年的工程费用比例为第1年45%,第2年55%,建设期内年平均价格上涨指数为4%,则第2年的涨价预备费为()万元。
燃气管与给水管的水平净距以及燃气管顶与路面的距离有何要求?B公司对事故应该怎么负责?
个人转让无形资产的,以受让人为营业税扣缴义务人。()
“SMART”原则是管理学中的一个重要原则。下列对其理解正确的一项是()。
下列最接近完全竞争市场的是:
下列说法中正确的是()。
最新回复
(
0
)