首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有二阶连续导数,证明 ∫baf(x)dx﹦[f(a)﹢f(b)]﹢∫baf”(x)(x-a)(x-b)dx。
设f(x)在[a,b]上有二阶连续导数,证明 ∫baf(x)dx﹦[f(a)﹢f(b)]﹢∫baf”(x)(x-a)(x-b)dx。
admin
2019-01-22
37
问题
设f(x)在[a,b]上有二阶连续导数,证明
∫
b
a
f(x)dx﹦
[f(a)﹢f(b)]﹢
∫
b
a
f
”
(x)(x-a)(x-b)dx。
选项
答案
由分部积分法得 ∫
a
b
f(x)dx=∫
a
b
f(x)d(x-b) ﹦f(a)(b-a)-∫
a
b
f
’
(x)(x-b)d(x-a) ﹦f(a)(b-a)﹢∫
a
b
(x-a)d[f
’
(x)(x-b)] ﹦f(a)(b-a)﹢∫
a
b
(x-a)df(x)﹢∫
a
b
f
”
(x)(x-a)(x-b)dx ﹦f(a)(b-a)﹢f(b)(b-a)-∫
a
b
f(x)d(x-a)﹢∫
a
b
f
”
(x)(x-a)(x-b)dx, 移项并整理得 ∫
a
b
f(x)dx﹦[*](b-a)[f(a)﹢f(b)]﹢[*]∫
a
b
f
”
(x)(x-a)(x-b)dx。 本题考查定积分的求解。观察题目要证明的等式,我们可以发现等式右端的被积函数中包含f
”
(x)的形式,因此我们可以考虑使用分部积分法进行求解。同时,由于等式左端的被积函数是f(x),所以在求解过程中要多次使用分部积分法。
解析
转载请注明原文地址:https://kaotiyun.com/show/tyM4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,证明
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
已知线性方程组有解(1,一1,1,一1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
设A是m×n矩阵,r(A)=r.则方程组AX=β
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕x轴旋转一周所得到的曲面,取外侧.
设A是n阶可逆方阵,则(-A)*等于()
设y1(x)、y2(x)为二阶变系数齐次线性方程y″+p(x)y′+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
微分方程(1-x2)y-xy’=0满足初值条件y(1)=1的特解是________
随机试题
材料按实际成本核算时,应设置的账户有()。
患者,男性,39岁,出现口腔溃疡1周,经检查舌背有一钱币大小的孤立溃疡,表面有棕色薄痂,触之有软骨样感觉。患者承认与另一梅毒患者有性接触史。临床症状为
流行性脑脊髓膜炎患者在败血症期会出现皮肤黏膜病变,典型的变化是
依据不同的分类标准,定金合同属于()。
“经营单位”栏应填;“总价”栏应填:
2001年,全国基础教育工作会议旗帜鲜明地把课程改革作为一项政府行为,明确了基础教育对促进社会主义现代化建设具有的作用是()
某农牧区由于长期滥垦草原、超载放牧,不仅没有改变经济落后的面貌,反而导致自然环境的严重破坏,不仅没有改变经济落后的社会面貌,反而导致自然环境的严重破坏,草原承载力急剧下降。践行科学发展观以来,农牧民改变以往的经济发展方式,根据当地自然条件种植沙柳资源林,大
基尼系数,是衡量分配不平等程度的重要指标。国际上通常认为,当基尼系数低于0.2表示收入绝对平均;0.3-0.4表示相对合理;0.4-0.5表示收入差距较大;0.6以上表示收入差距悬殊。下列选项中,有关基尼系数说法不正确的是()。
红军长征胜利的意义主要有
单击“字处理”按钮,然后按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。某高校学生会计划举办一场“大学生网络创业交流会”的活动,拟邀请部分专家和老师给在校学生进行演讲。因此,校学生会外联部需制作一批邀请函,并分别递送
最新回复
(
0
)