首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明: (b-a)f()≤∫abf(x)dx≤[f(a)+f(b)].
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明: (b-a)f()≤∫abf(x)dx≤[f(a)+f(b)].
admin
2020-03-05
24
问题
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
(b-a)f(
)≤∫
a
b
f(x)dx≤
[f(a)+f(b)].
选项
答案
由泰勒公式得 [*] 其中ξ介于x与[*]之间, 因为f"(x)≥0,所以有 [*] 两边积分得 [*] 令φ(x)=[*][f(x)+f(a)]-∫
a
x
f(t)dt,且φ(a)=0, [*] =1/2(x-a)[f’(x)-f’(η)],其中a≤η≤x, 因为f"(x)≥0,所以f’(x)单调不减,于是φ’(x)≥0(a≤x≤b), [*] 故(b-a)f([*])≤∫
a
b
f(x)dx≤[*][f(a)+f(b)].
解析
转载请注明原文地址:https://kaotiyun.com/show/tyS4777K
0
考研数学一
相关试题推荐
假设随机变量X服从[-1,1]上的均匀分布,a是区间[-1,1]上的一个定点,Y为点X到a的距离,当a=_______时,随机变量X与Y不相关。
设f(x)在x=0处二阶可导,f(0)=0且=2,则().
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则
设f(x)在x=0的某邻域内二阶连续可导,且f(x)/x=0.证明:级数f(1/n)绝对收敛.
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设曲线L的长度为l,且=M.证明:|∫LPdx+Qdy|≤Ml.
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)