首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的某邻域内二阶连续可导,且f(x)/x=0.证明:级数f(1/n)绝对收敛.
设f(x)在x=0的某邻域内二阶连续可导,且f(x)/x=0.证明:级数f(1/n)绝对收敛.
admin
2019-02-26
51
问题
设f(x)在x=0的某邻域内二阶连续可导,且
f(x)/x=0.证明:级数
f(1/n)绝对收敛.
选项
答案
由[*]=0,得f(0)=0,f’(0)=0.由泰勒公式得 f(x)=f(0)+f’(0)x+[*]x
2
,其中ξ介于0与x之间. 又f"(x)在x=0的某邻域内连续,从而可以找到一个原点在其内部的闭区间,在此闭区间内有|f"(x)|≤M,其中M>0为f"(x)在该闭区间上的上界. 所以对充分大的n,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/sh04777K
0
考研数学一
相关试题推荐
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1),证明:存在满足0ξ<η<1的ξ,η,使得f′(ξ)+f′(η)=0。
设矩阵则B=()
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
设A=(aij)m×n,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,χ=(χ1,χ2,…,χm)T,证明方程组Ay=b有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
设函数f(χ)在[a,b]上连续,在(a,b)上二阶可导,且f(a)=0,f(b)>0,f′+(a)<0。证明:(Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0;(Ⅱ)在(a,b)内至少存在一点η,使得f〞(η)>0。
设f(u)有连续的二阶导数,且z=f(eχsiny)满足方程=e2χz,求f(u)。
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明:(I)存在ξ∈(a,b),使得∫aξf(x)dx=0;(Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
随机试题
计算简答题:根据所给材料回答问题。(需计算后回答的问题,须列出算式;每个问题计算过程中的小数均保留实际位数,计算结果有小数的,小数保留2位。)某出版社拟出版一本由摄影家赵明撰写的随笔集《光影的记忆》。该书的整体设计方案包括:采用32开本,勒口平装
因其制作风筝历史悠久,手艺成熟而称为“风筝之都”的城市是()。[江西2018]
收集单个被试的资料以分析其心理特征的方法是_______。
关于全国人大常委会,下列说法中,错误的是哪一项?()
公路水运工程试验检测检测记录和报告的签字均需授权()。
不需要重新绘制地籍二底图的情况是()。
中央固定收入不包括下列()税收。
商业银行系统缺陷包括()和系统维护不完善所产生的风险。
近代警察的管理体制的形成主要是英、法两国警察制度的影响。( )
【C1】________TheDailyMirrorandtheDailyExpressbothsellaboutfourmillioncopieseveryday.Apartfromthenationalpapers
最新回复
(
0
)