首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
admin
2016-10-24
28
问题
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=0,得|aE一A|.|bE一A|=0,则|aE一A|=0或者|bE一A|=0.又由(aE一A)(bE一A)=0,得r(aE一A)+r(bE一A)≤n. 同时r(aE一A)+r(bE一A)≥r[(aE一A)一(bE一A)]=r[(a一b)E]=n. 所以r(aE一A)+r(bE一A)=n. (1)若|aE一A|≠0,则r(aE一A)=n,所以r(bE一A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE一A)=0,故A=aE. (3)若|aE一A|=0且|bE一A|=0,则a,b都是矩阵A的特征值,方程组(aE一A)X=0的基础解系含有n一r(aE一A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE一A)个; 方程组(bE一A)X=0的基础解系含有n一r(bE一A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE一A)个. 因为n一r(aE一A)+n一r(bE一A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/tzH4777K
0
考研数学三
相关试题推荐
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
求下列初值问题的解:(1)y3dx+2(x2-xy2)dy=0,y|x=1=1;(2)y〞-a(yˊ)2=0,y|x=0=0,yˊ|x=0=-1;(3)2y〞-sin2y=0,y|x=0=π/2,yˊ|x=0=1;(4)y〞+2yˊ
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
用铁锤将一铁钉击人木板,设木板对铁钉的阻力与铁钉击人木板的深度成正比.在击第一次时,将铁钉击入木板1cm如果铁锤每次打击铁钉所作的功相等,问铁锤击第二次时,铁钉又被击人多少?
下列反常积分是否收敛?如果收敛求出它的值:
在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:P(0,2,-5);Q(5,2,0);R(8,0,0);S(0,2,0).
证明下列不等式:
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
对用户查询的响应属于()
下面所收集到的资料属于客观费料
吗啡的适应证正确的是
在肾盂肾炎患者的尿常规检查中,下列哪项结果更有重要诊断意义
成型或分装前使用同一台混合设备一次混合量所生产的均质产品同一批原料药在同一连续生产周期内生产的均质产品
受拉区和受压区的第一批预应力损失值与______项数值最为接近。放松钢筋时,截面上下边缘的混凝土预应力与______项数值最为接近。(提示:计算时仅考虑第一批预应力损失,此时预应力钢筋的合力NpoI=684.31kN,预应力钢筋合力作用点至换算截面重心
根据国家规定,可以按照工资总额的()提取福利费计入成本费用。
根据公司法律制度的规定,有限责任公司自行清算的,其清算组()。
0,3,8,15,()。
A、 B、 C、 D、 A
最新回复
(
0
)