首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f+’(a)f-’(b)>0,且g(x)≠0(x∈[a,b],g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f+’(a)f-’(b)>0,且g(x)≠0(x∈[a,b],g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
admin
2020-03-05
12
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f
+
’
(a)f
-
’
(b)>0,且g(x)≠0(x∈[a,b],g
’’
(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f
+
’
(a)>0,f
-
’
(6)>0, 由f
+
’
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f
-
’
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h
’
(ξ
1
)=h
’
(ξ
2
)=0, 而h
’
(x)=[*] 令φ(x)=f
’
(x)g(x)一f(x)g
’
(x), φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ
’
(ξ)=0, 而φ
’
(x)=f
’’
(x)g(x)一f(x)g
’’
(x),所以[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/u0S4777K
0
考研数学一
相关试题推荐
设随机变量X和Y的联合分布函数为则随机变量X的分布函数P(x)为_______.
一台设备由三个部件构成,在设备运转中各部件需要调整的概率分别为0.10,0.20,0.30,设备部件状态相互独立,以X表示同时需要调整的部件数,则X的方差为______.
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,当n→∞时Xi依概率收敛于其数学期望,只要{Xn,n≥1}
幂级数的收敛半径为_________.
设随机变量X在区间(-1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…Xn取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).(I)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使均为θ的无偏估计,并比较其有效性;(Ⅲ)应用切比雪夫不等式证明:均
[2008年]求极限
设y=y(x)二阶可导,且y′≠0,x=x(y)是y=y(x)的反函数.将x=x(y)所满足的微分方程=0=变换为y=y(x)所满足的微分方程.
随机试题
新生儿窒息常用可用作巴比妥类中毒解救的辅助用药
男性患者,40岁,有高血压病病史10年,突发昏迷,呕吐咖啡样胃内容物,查体:右侧肢体肌力0级,右侧病例征阳性,最可能的诊断是( )。
道.琼斯指数股价综合平均数的编制对象是()
简述观察法的含义及优缺点。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻。有说服力。
IAEA
Universitiesareinaseeminglyself-contradictoryposition.AsStefanCollinipointsoutinhisbook,theseancient【C1】______ha
()不属于工程监理日报的内容。
TheWorldHealthOrganization(WHO)wassetupon7thApril1948,adatethatisnowcelebratedeveryyearasWorldHealthDay.T
A、Itmayhaveanegativeinfluence.B、Itplaysaverysignificantrole.C、Itismeaningless.D、Itcanhaveapositiveimpact.A推
最新回复
(
0
)