首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
admin
2017-06-08
83
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型
(1)用矩阵乘积的形式写出此二次型.
(2)f(x
1
,x
2
,…,x
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
,[*]i,j,并且A
-1
也是实对称矩阵,其(i,j)位的元素就是4
ij
|A|,于是f(x
1
,x
2
,…,x
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(x
1
,x
2
,…,x
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/u0t4777K
0
考研数学二
相关试题推荐
20π
[*]
(e-1)/2
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
A.麻风病B.狂犬病C.风疹D.鼠疫E.流行性腮腺炎上述各项,属于乙类传染病的是()
会计核算软件主要是替代了手工会计的()等工作。
下列商业银行的理财顾问服务流程的环节中,顺序存“建立投资组合”之后的是()
房地产开发企业计算土地增值税时,所销售的房产对应的下列费用中,准予按照实际发生额从收入总额中扣除的有()。
在签署审计业务约定书前,会计师事务所应当评价自身的专业胜任能力,包括( )。在签署审计业务约定书之前,注册会计师应当对被审计单位的基本情况进行了解,其内容包括( )。
儿歌是以低幼儿童为主要对象的文学作品,试简述儿歌的特点。
3岁孩子拿着画笔认真画画时,不仅是手动,身体的动作、面部的动作也来帮忙。这体现了儿童动作发展的()。
在关系数据库中,用来表示实体间联系的是
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
A、 B、 C、 A叙述将来的事情的陈述句→将来时态的否定回答
最新回复
(
0
)