首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有( )
设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有( )
admin
2018-04-14
41
问题
设F(x)是连续函数f(x)的一个原函数,“M
N”表示“M的充分必要条件是N”,则必有( )
选项
A、F(x)是偶函数
f(x)是奇函数。
B、F(x)是奇函数
f(x)是偶函数。
C、F(x)是周期函数
f(x)是周期函数。
D、F(x)是单调函数
f(x)是单调函数。
答案
A
解析
方法一:f(x)的原函数可以表示为F(x)=∫
0
x
f(t)dt+C。如果F(x)为偶函数,则F(-x)=F(x),等式两边同时求导可得-f(-x)=f(x),可知f(x)为奇函数。
如果f(x)为奇函数,F(-x)=∫
0
-x
f(t)dt+C,对其作变量代换,令u=-t可得
F(-x)=∫
0
x
f(-u)(-du)+C=∫
0
x
-f(u)(-du)+C=∫
0
x
f(u)du+C=F(x),
可知F(x)为偶函数。
综上所述,选项A是正确的。
方法二:举反例排除。令f(x)=x
2
,F(x)=
x
3
+1,可知f(x)为偶函数时,F(x)不一定为奇函数;令f(x)=cosx+1,F(x)=sinx+x,可知f(x)为周期函数时,F(x)不一定为周期函数;令f(x)=x,F(x)=1/2x
2
,可知f(x)为单调函数时,F(x)不一定为单调函数。由此只有选项A是正确的。
转载请注明原文地址:https://kaotiyun.com/show/u3k4777K
0
考研数学二
相关试题推荐
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
矩阵相似的充分必要条件为
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设f(x)∈[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1,证明:∫abf(x)φ(x)dx≥f[∫abφ(x)dx].
设f(x)为连续函数,φ(x)=∫0sinxf(tx)dt,则在x=0处,下列正确的是().
(2008年试题,二(14))设三阶矩阵A的特征值是λ,2,3若行列式|2A|=一48,则λ=__________.
设f(x,y)为连续函数,则等于
设讨论f(x)的连续性,若有间断点并指出间断点的类型;
随机试题
对周期性麻痹叙述不正确的是
阳虚水泛型肺胀的治则是痰热郁肺型肺胀的治则是
依据《中华人民共和国循环经济促进法》,电力、石油加工等企业,必须在国家规定的范围和期限内,以洁净煤、石油焦、天然气等清洁能源替代燃料油,停止使用不符合国家规定的()。
2011年7月20日,某工业园区当值安全员李某巡逻时,突然发现2号宿舍楼302员工宿舍有浓烟从窗户向外冒出,其意识到302室已发生火警(注:宿舍所属单位员工都在上班),李某即刻用对讲机通知巡逻岗,同时快速冲向宿舍提取灭火器赶赴事发现场。巡逻岗在得到火警信息
税种认定涉及国税、地税两套税务机构的纳税人,税务代理税种认定,下列做法不合适的有( )。
个人住房贷款的信用风险通常是因借款人的()和()下降导致的。
下列选项中,不能设立临时性行政许可的规范是()。
原计划在雕塑周围用若干盆花围成一个4层的空心方阵,但为了整体美观,最后决定将花盆排成2层。4层空心方阵与2层空心方阵相比,最外一层每边少8盆,那么一共有多少盆花?()
提高效度的方法有哪些?【河北师范大学2013;曲阜师范大学2011】
Ateacherwhoisskillfulindeliveringhislecturecanundoubtedly______themindofstudents.
最新回复
(
0
)