首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(α1,…,αs)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(α1,…,αs)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2017-01-14
76
问题
设向量组(Ⅰ):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为
(b
1
,…,b
r
)=(α
1
,…,α
s
)K,
其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}≤r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/uDu4777K
0
考研数学一
相关试题推荐
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
下列各对函数中,两函数相同的是[].
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
求下列递推公式(n为正整数):
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数)
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
随机试题
Myteacherrecommendedmeadictionary,andyesterdayIboughtacopyintown.
代理业务的依据是()
Peoplehavebeenshootingbowsandarrowsforatleast20,000years.Somefamouspaintingsofshootersareatleast【21】old.Thes
急性闭角型青光眼发作期房水浑浊严重时应
下列选项中,既能清湿热,又能除疳热的药物是
期末计提长期借款利息时,贷记的账户是()。
4x400米比赛中第二道运动员在第()个弯道可以切入内道。
外国人管理和中国公民的出入境管理工作是指对外国人在中国的入境、出境、居留、旅行实施管理,保护外国人的合法权益,发现和处理外国人的违法犯罪活动,处理国籍问题。对出入境的中国公民、华侨、港澳台同胞、边境居民进行管理。依法查处出入境人员中的违法犯罪人员。(
没有文化事业和文化产业的发展,文化资源就不可能转变为现实的文化力量。发展文化事业和文化产业,要体现社会主义的制度特色。发展文化事业,就是要
Inwhichfielddoesthemanwork?
最新回复
(
0
)