首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=-0.5,且P(aX+bY≤1)=0.5,则( ).
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=-0.5,且P(aX+bY≤1)=0.5,则( ).
admin
2020-03-24
56
问题
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρ
XY
=-0.5,且P(aX+bY≤1)=0.5,则( ).
选项
A、
B、
C、
D、
答案
D
解析
因为(X,Y)服从二维正态分布,所以aX+bY服从正态分布, E(aX+bY)=a+2b,
D(aX+bY)=a
2
+4b
2
+2abCov(X,y)=a
2
+4b
2
-2ab,
即aX+by~N(a+2b,a
2
+4b
2
-2ab),
由P(aX+by≤1)=0.5得a+2b=1,所以选D.
转载请注明原文地址:https://kaotiyun.com/show/uKD4777K
0
考研数学三
相关试题推荐
设k>0,且级数收敛,则级数
设f(x)在(一∞,+∞)上连续,则下列命题正确的是
已知A是3阶矩阵,r(A)=1,则λ=0()
设随机变量X与y相互独立且均服从标准正态分布N(0,1),则().
设A=,方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=()
y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+y2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为____________.
随机试题
某人在意外事故中脊髓损伤,丧失横断面以下的一切躯体与内脏反射活动,但数周后屈肌反射、腱反射等较简单的反射开始逐渐恢复,这表明该患者在受伤当时出现了()。
Tostayeconomicallycompetitiveonaglobalscale,theUnitedStatesneeds8millionmorecollegegraduates【C1】______2020.That
患者,女性,65岁。因发现右侧乳房近乳头处包块半年来院就诊,既往体健。查体:右侧乳腺外上象限近乳头处可触及约3cm×1.5cm质硬肿物,肿物局部皮肤稍凹陷,无压痛,边界尚清,腋窝未触及明显肿大淋巴结。患者的临床分期为
在五色主病中,黑色主
女性,65岁,被诊断为狭窄性腱鞘炎,则下述哪种临床表现或特点该患者最不可能出现
某女,32岁。口舌生疮,烦躁焦虑,口干舌燥,小便短赤。舌尖红,苔薄黄,脉数。脉数主病是
票据当事人,是指票据法律关系中享有票据权利、承担票据义务的当事人。以下属票据的基本当事人的有()。
甲公司系增值税一般纳税人,购入原材料750公斤,收到的增值税专用发票注明价款4500万元、增值税税额765万元;发生的运输费为9万元,增值税为0.99万元、包装费3万元、途中保险费用2.7万元。原材料运达后,验收入库数量为748公斤,差额部分为运输途中发生
到2012年7月,中国共产党第十八次全国代表大会代表选举工作顺利完成。差额选举比例提高是这次党代表选举的一个重要特征。差额选举比例的提高有利于()。
2008年国务院制定了我国的十大产业振兴规划,下列未被纳入的行业是()
最新回复
(
0
)