首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实矩阵A为3阶正交矩阵,其元素a22=1,又3维列向量α=[0,3,0]T,则A-1α=________.
设实矩阵A为3阶正交矩阵,其元素a22=1,又3维列向量α=[0,3,0]T,则A-1α=________.
admin
2021-07-27
41
问题
设实矩阵A为3阶正交矩阵,其元素a
22
=1,又3维列向量α=[0,3,0]
T
,则A
-1
α=________.
选项
答案
[0,3,0]
T
解析
记
,由于A为正交矩阵,故其每一行向量、每一列向量均为单位向量,于是有a
12
2
+1
2
+a
32
2
=1,a
21
2
+1
2
+a
23
2
=1,即有a
12
=a
32
=a
21
=a
23
=0.又由正交矩阵定义,AA
T
=E,有A
-1
=A
T
,故
转载请注明原文地址:https://kaotiyun.com/show/uLy4777K
0
考研数学二
相关试题推荐
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
A、 B、 C、 D、 B
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
=()
设f(x)=2x+3x一2,则当x→0时()
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是(
一个值不为零的n阶行列式,经过若干次矩阵的初等变换后,该行列式的值()
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设f(x)在x=0处存在4阶导数,又设则必有()
随机试题
急性链球菌感染后肾炎典型的临床表现是
A、dearB、heartC、earD、tearB
体内CO2分压最高的部位是
上颌骨骨折后骨折片移位方向一般是A.向后上B.向后内C.向后下D.向后外E.向内前
房地产的特性主要取决于土地的特性,它的基础是()。
起重机械失稳的主要原因有()。
进行火灾风险识别中,需判定火灾危险源。下列火灾危险源因素中,属于人为因素的是()。
甲公司和乙公司2013年度和2014年度发生的有关交易或事项如下:(1)2013年5月20日,乙公司的客户(丙公司)因产品质量问题向法院提起诉讼,请求法院裁定乙公司赔偿损失120万元。截止到2013年6月30日,法院尚未对上述案件作出判决,在向法院了解情
在一个复杂多变的世界里,我们不仅要努力工作,还要学习更灵捷地工作。更清楚、更快捷和更有创造性的能力是重要的,然而,许多人并没有意识到我们思维的局限性。问题在于,我们的思维定式束缚了我们思想中最灵捷的部分。本书诠释了思维创新的技巧,提出了一系列思考的工具和技
A、Becauseit’snotherjobtotakecareofthenoise.B、Becausethebigtenantmightposeathreattoher.C、Becauseshecan’tc
最新回复
(
0
)