首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
admin
2021-11-25
51
问题
设A是n阶矩阵,α
1
,α
2
,α
3
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…Aα
n-1
=α
n
,Aα
n
=0
求A的特征值与特征向量。
选项
答案
A(α
1
,α
2
,α
3
,…,α
n
)=(α
1
,α
2
,α
3
,…,α
n
)[*] 令P=(α
1
,α
2
,α
3
,…,α
n
) 则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0→λ
1
=λ
2
=...=λ
n
=0. 即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aa
n
=0a
n
(a
n
≠0),所以A的全部特征值为ka
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/uZy4777K
0
考研数学二
相关试题推荐
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
以下关于二元函数的连续性的说法正确的是()
设A,B为n阶矩阵,下列命题成立的是().
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是().
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E为3阶单位矩阵.证明:矩阵A-2E可逆;
设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为().
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减少了体积的,问
随机试题
下列对脑血栓形成急性期的护理措施中哪项错误
按照《建设工程消防监督管理规定》规定,施工单位应当承担的消防施工的质量和安全责任有()。
当上部结构荷载很大、地基承载力不能满足设计要求时,应选择()。
下列关于印花税的征收,表述错误的是()。
农业产业化经营的组织模式,不包括()。
纳税人尚未核发土地使用证书的,其缴纳城镇土地使用税的计税依据为()
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.证明:平面ABD⊥平面BDC;
音强、音色、音位都是由语音的物理属性决定的。()
Overthelast20years,energysystemsandserviceshaveexpanded.Californianowmeetsitsenergyneedsusingavarietyofsour
A、Theyextendtheirwaterpipes.B、Theygiveoutfaintcries.C、Theymakenoisestodriveinsectsaway.D、Theybecomeaselastic
最新回复
(
0
)