首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
admin
2021-11-25
80
问题
设A是n阶矩阵,α
1
,α
2
,α
3
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…Aα
n-1
=α
n
,Aα
n
=0
求A的特征值与特征向量。
选项
答案
A(α
1
,α
2
,α
3
,…,α
n
)=(α
1
,α
2
,α
3
,…,α
n
)[*] 令P=(α
1
,α
2
,α
3
,…,α
n
) 则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0→λ
1
=λ
2
=...=λ
n
=0. 即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aa
n
=0a
n
(a
n
≠0),所以A的全部特征值为ka
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/uZy4777K
0
考研数学二
相关试题推荐
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
曲线的拐点的个数为().
设D为有界闭区域,z=f(χ,y)在D上二阶连续可偏导,且在区域D内满足:≠0,则().
设方程exy+y=cosx确定y为x的函数,则dy/dx=________.
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
微分方程y〞-4y=χ+2的通解为().
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,,试证明存在ξ∈(a,b)使.
一容器在开始时盛有盐水100升,其中含净盐10公斤.现以每分钟3升的速度注入清水,同时以每分钟2升的速度将冲淡的溶液放出.容器中装有搅拌器使容器中的溶液保持均匀,求过程开始后1小时溶液的含盐量.
随机试题
Today,thereisnosuchthingasa"typical"collegestudent.Peopleofallagesareenrolledincollege.Thoughtheconcept
关于辨证的描述正确的是
在蛇口工业公司与珠海建材公司购销合同纠纷仲裁过程中,申请人要求财产保全,即冻结被申请人银行存款55万元,或扣押、查封其等值财产。仲裁委员会对此申请采取下列哪些处理办法是不正确的?()
质量管理的PDCA循环中,“D”的职能是()。
会计电算化岗位及其权限设置应该由()来进行设置。
下列各项中,属于成品油征收范围的有()。
导游谢某在导游活动中,与景区某商店李某串通起来,欺骗旅游者消费,使旅游者购买了大量假玉石,造成恶劣影响。对此,旅游行政部门可以依据《导游人员管理条例》处罚()。
强调儿童在教育中的中心地位,主张教师应以学生的发展为目的,围绕学生的需要和活动组织教学,因此以儿童中心主义著称的教育家是()。
孟子的“徒法不足以自行”表明了法的哪一项特性()
南水北调工程
最新回复
(
0
)