首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求此齐次方程组的一个基础解系和通解.
求此齐次方程组的一个基础解系和通解.
admin
2018-06-27
35
问题
求此齐次方程组的一个基础解系和通解.
选项
答案
①用初等行变换将系数矩阵化为阶梯形矩阵 [*] 则系数矩阵的秩为2,小于未知数个数5,此齐次方程组有非零解. 进一步把阶梯形矩阵化为简单阶梯形矩阵: [*] ②选定自由未知量x
2
,x
4
,x
5
,用它们表示出待定未知量,得到同解方程组: [*] (一般情况都把阶梯形矩阵的台角所在列号对应的未知量(如本题中的x
1
,x
3
)作为待定未知量,其他未知量作为自由未知量.这样得到的同解方程组直接用自由未知量表示出待定未知量,) ③对自由未知量赋值,决定基础解系. 一般做法为让自由未知量轮流地取值1(其他未知量取值0),这样得到的一组解为基础解系,如本题的一个基础解系为: η
1
=(-2/3,1,0,0,0)
T
,η
2
=(-1/3,0,0,1,0)
T
,η
3
=(-2/9,0,-1/3,0,1)
T
, ④写出通解c
1
η
1
+c
2
η
2
+c
3
η
3
,其中c
1
,c
2
,c
3
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/uak4777K
0
考研数学二
相关试题推荐
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.对(I)中的ξ∈(a,b),求
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>0)下的最大值是
设f(x)是(一∞,+∞)上的连续奇函数,且满足|f(x)|≤M,其中常数M>0,则函数F(x)=是(一∞,+∞)上的
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
已知又矩阵A和B相似,A*是A的伴随矩阵,则|A*+3E|=__________.
设积分区域D:{(x,y)|0≤x≤1,0≤y≤1},求
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
随机试题
患儿,女,3岁。口中涎水不断,大便不成形,舌苔水滑。用药宜首选()
男,60岁。慢性阻塞性肺气肿,有可能出现下列哪项体征
某建设单位经相关主管部门批准,组织某机电设备安装工程项目全过程总承包(即EPC模式)的公开招标工作。根据实际情况和建设单位要求,该工程工期定为两年,考虑到各种因素的影响,决定该工程在基本方案确定后即开始招标,确定的招标程序如下:(1)成立该工程招标领导机
基点及变形观测点的布设要求中,基准点宜选在地基稳固、便于监测和不受影响的地点,一个测区的基准点不应少于()个。
客户接触点包括()。
甲公司2015年至2017年有关资料如下:(1)2015年1月1日,甲公司与丁公司签订技术转让协议,自丁公司取得其拥有的一项专利权。协议约定,专利权的转让价款为3000万元,甲公司应于协议签订之日支付600万元,其余款项分四次自当年起每年12月31日支付
走路过程中,看到前面某处污水横流,臭味四溢,便绕道避开。这种行为属于()。
2001年,国家“十五”计划纲要专门列出“实施人才战略,壮大人才队伍”一章,首次将()作为国民经济和社会发展规划的一个重要组成部分。
请简要叙述货币的职能。
《刑法》第31条规定:“单位犯罪的,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员判处刑罚。本法分则和其他法律另有规定的,依照规定。”试分析:单位犯罪的构成要件是什么?
最新回复
(
0
)