首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
admin
2020-04-30
15
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的基础解系.
选项
答案
证法1:由于 [*] 故β
1
,β
2
,β
3
,β
4
线性无关的充分必要条件是 [*] 即t≠±1时,β
1
,β
2
,β
3
,β
4
为Ax=0的基础解系. 证法2: 设k
1
,k
2
,k
3
,k
4
使 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+k
3
(α
3
+tα
4
)+k
4
(α
4
+tα
1
)=0, 即 (k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
2
+(tk
2
+k
3
)α
3
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,得 [*] 此方程组只有零解时,β
1
,β
2
,β
3
,β
4
才是Ax=0的基础解系.以下与“证法1”相同,即当t≠±1时,β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系.
解析
本题考查齐次线性方程组的基础解系的概念、解的性质和向量组线性相关性的证明方法,注意到β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系的充分必要条件是β
1
,β
2
,β
3
,β
4
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/ubv4777K
0
考研数学一
相关试题推荐
设是二阶常系数非齐次线性微分方程y"+ay’+by=cex的一个特解,则
[2016年]若反常积分收敛,则().
四元齐次线性方程组的基础解系是________.
随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
设三阶矩阵A的特征值为一1,1,2,其对应的特征向量为α1,α2,α3,令P=(3α2,一α3,2α1),则P-1AP等于().
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
设S是xOy平面上的圆域,x2+y2≤1,则二重积分(x2+y2+z2)dS等于().
设对任意正整数n,总有不等式an≤bn≤cn,则()
设f(x)是连续函数.求初值问题的解,其中a>0
随机试题
供应链绩效评价应遵循的原则是()
发生直立性低血压的主要生理原因是
急性粒细胞白血病与急性淋巴细胞白血病的鉴别要点是
清热调经汤的组成药物是清热固经汤的组成药物是
提高旅游宏观经济决策科学化水平的关键性因素主要有()。
企业成长过程一般要经历的变革阶段包括()。
利用代换u=ycosx将微分方程y”cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解.
参照完整性的规则不包括______。
Speaktohimslowly______hemayunderstandyoubetter.
Jobsinthe21stCenturyWhatwillourworldbelikein2050?Willfamiliesbesmaller?Willpeoplechangejobsandcareers
最新回复
(
0
)