首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
admin
2018-06-27
85
问题
A=E-αβ
T
,其中α,β都是n维非零列向量,已知A
2
=3E-2A,求α
T
β.
选项
答案
A
2
=3E-2A, A
2
+2A-3E=0. (A+3E)(A-E)=0, (4E-αβ
T
)(-αβ
T
)=0, 4αβ
T
-αβ
T
αβ
T
=0,(β
T
α是数!) (4-β
T
α)αβ
T
=0,(由于α,β都是非零列向量,αβ
T
不是零矩阵) [*] 4-β
T
α=0,β
T
α=4,从而α
T
β=β
T
α=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/uik4777K
0
考研数学二
相关试题推荐
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
已知矩阵若A+kE正定,求k的取值.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
下列矩阵中两两相似的是
随机试题
甲股份有限公司委托乙证券公司发行普通股,股票面值总额20000万元,发行总额80000万元,发行费按发行总额的2%计算(不考虑其他因素)。股票发行净收入全部收到。甲股份有限公司因该笔业务记入“资本公积”科目的金额为()万元。
股骨颈骨折的典型表现是
急性牙髓炎的疼痛性质中,最具诊断特点的是
患者,男,62岁。咳嗽30年,近日咳大量脓痰,气憋,下肢水肿本病最主要的治疗原则是
根据《中华人民共和国大气污染防治法》饮用水水源保护的有关规定,饮用水水源二级保护区禁止建设的项目有()。
发现直接危及人身安全的紧急情况时,从业人员停止作业或者在采取可能的应急措施后处理作业场所的权利是()。
会计职业道德教育的途径有()。
教学过程的基本要素为______、______和______。
52220
IwenttoaCatholicboysschoolinBlackpoolintheNorthofEngland.InmyfirstyearintheseniorschoolIwasanerdykid,
最新回复
(
0
)